Current issues of therapy with monoclonal antibodies

K. Jahnz-Różyk

S. Albrecht et al: Therapeutic proteins: facing the challenges of glycobiology.

E. Więśik-Szewczyk: Belimumab therapy in systemic lupus erythematosus - the clinical expectations and burdens.

Dear Colleagues

Recently many biological drugs have lost or will lose patent protection soon- hence biosimilars will be introduced to the market.

In Poland, a group of experts from various fields of medicine has developed a position paper, which could be helpful in making therapeutic decisions for doctors who use biological drugs in everyday practice.

This position paper has been published in “Polski Merkurier Lekarski” (Pol. Merk. Lek., 2014, XXXVII, 217) and you can find a translation of this article in the current JHPOR issue.

Experts are in agreement in their opinion that the complex and dynamic problem of using innovative and biosimilar biological drugs places a duty on all health care professionals to systematically monitor this process.

We also recommend the articles concerning the reimbursement system and actions of NHF in Poland and many other.

We wish you an interesting read of the fifth JHPOR issue!

Editor-in-Chief
Prof. K. Jahnz-Różyk
Deputy Editor-in-Chief
Dr J. Lis

General Editorial Policies

Journal of Health Policy & Outcomes Research (JHPOR) is pre-reviewed, international scientific journal, publishing the work of an important contribution to the development of pharmacoeconomics and outcome research in Poland and worldwide. The journal is issued under the auspices of the Polish Society of Pharmacoeconomics. The journal is published twice a year in electronic form, optionally in the paper version.

Topics of publications include the following issues:

- Clinical Trials (Phase 1-4)
- Health-Related Quality of Life
- Pharmacoeconomics Analyses
- Comparative Effectiveness Research
- Pharmacoeconomic Analysis
- Health Technology Assessment
- Patient-Reported Outcomes (PRO)
- Health Policy Analysis in Poland and around the World
- Budget Impact Analyses
- Decision Making and Management in Health Care
- Health Insurance

Publisher
Fundacja Pro-Medicina
www.promedicina.pl

Office
Marta Warchoł
Aneta Wójcikowska
office@jhpor.com

From the Editors

1. From the Editors - K. Jahnz-Różyk
2. Current issues of therapy with monoclonal antibodies - K. Jahnz-Różyk
3. Therapeutic proteins: facing the challenges of glycobiology - S. Albrecht, M. Hilliard, P. Rudd
4. Immunomodulation as the desired therapy in some cases of allergic diseases - J. Mazurek
5. Belimumab therapy in systemic lupus erythematosus – the clinical expectations and burdens - E. Więsik-Szewczyk
7. Drug procurement cooperation (LIS) – Norwegian tender system to reduce cost of expensive medicines - P. Mielnik
10. Mammography screening in the OECD and its impact on health and health system related indicators - S. Wilde, T. Wirth, Y. P. Zöllner
11. Verification of healthcare needs by the use of National Health Fund data: mental and behavioural Disorders - A. Śliwczyński, J. Michalak, A. Fałek, M. Brzozowska, M. Marczak
12. „Pay-back” mechanism in the Polish reimbursement system - analysis and appraisal - B. Podgórny
13. Medical Information Center (CIM) - W. Giermaziak
14. Polish Pharmacoeconomic Society activities review 1/2014 - M. Szkultecka-Dębek
Current issues of therapy with monoclonal antibodies

K. Jahnz-Różyk, Department of Immunology & Clinical Allergology, Military Institute of Medicine, Warsaw, Poland

ABSTRACT

The paper presents the most important aspects of treatment with monoclonal antibodies (MABs). Clinical and economic consequences of MABs biosimilars were shown. Access to MABs treatment in drug programs in Poland has been also presented.

SOME TERMS AND DEFINITIONS OF BIOPROCESSING AND BIOLIGIC MEDICINES

Biotechnology is a technological application that uses biological systems, living organisms or derivatives of, to make or modify products or processes.

Bioprocessing uses organisms or biologically derived macromolecules to carry out enzymatic reactions or to manufacture products.

Biopharmaceutical is a therapeutic product created through the genetic manipulation of living things, including but not limited to proteins and monoclonal antibodies, peptides, and other molecules that are not chemically synthesized, along with gene therapies, cell therapies, and engineered tissues.

Biopharmaceuticals involve the incorporation of foreign DNA into an organism’s genetic material to generate a genetically modified organism (GMO) producing elevated amounts of therapeutic protein.

Majority of biopharmaceuticals are therapeutic proteins or glycoproteins (i.e. proteins with sugar attached).

Protein therapeutics can more effectively interact with a large number of target receptors; small molecule drugs do not.

The interaction is more effective in triggering the desired biological response.

Production of biopharmaceuticals is a complex and costly process and involves the following steps:

1. Upstream processing (batch, fed batch and perfusion)
2. Primary Capture & Recovery (harvest and product separation)
3. Downstream processing and purification (chromatography and virus removal filtration, concentration and diafiltration)
4. Formulation and filling (sterile filtration).

Early biopharmaceuticals included simple proteins which were typically replacement proteins for existing natural products e.g. insulin.

Current biologics are most complex proteins with tertiary structure and post-translational modifications e.g. monoclonal antibodies.

Monoclonal antibodies (MABs) are a special class of proteins, known as immunoglobulins, or Igs. All proteins are made up of amino acids. Anti-bodies are used by the immune system to identify and neutralize foreign objects.

Biosimilar is a biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product. Biosimilars must be shown on the basis of analytical, non-clinical and clinical data to be similar to an original biologic in terms of structural characteristics, and safety and efficacy. Biosimilar cannot be more potent or efficacious than innovator.

Differences across European Member States in national healthcare systems, structures and processes impact biosimilar uptake. Such differences may be any or all of the following:

- Physicians’ perception of biosimilars (willingness to prescribe)
- Patients’ acceptance of biosimilars (willingness to accept)
- Local pricing and reimbursement regulation (willingness to pay)
- Procurement policies and terms (willingness to buy).

MONOCLONAL ANTIBODIES

Monoclonal antibodies (MABs) were first invented by Kohler & Milstein (1975) in Cambridge, UK. MABs are antibodies that are produced by one type of immune cell and are all clones of a single parent cell. Initially, the development of MABs therapy was slower because of rejection problems of mouse proteins in humans.

Monoclonal antibody therapy is the use of MABs to specifically bind to target cells or proteins. This may then stimulate the patient’s immune system to attack those cells. It is possible to create a MAB specific to almost any extracellular cell surface target, and thus there is a large amount of research and development currently being undertaken to create MABs for numerous serious diseases (such as rheumatoid arthritis, multiple sclerosis, Alzheimer’s disease and different types of cancers). There are a number of ways that MABs can be used for therapy. For example: MABs therapy can be used to destroy malignant tumor cells and prevent tumor growth by blocking specific cell receptors.

ACCESS TO MABS AND FUSION PROTEINS IN POLAND – DRUG PROGRAMS

MABs in Poland are reimbursed under the drug programs. Drug Program is a guaranteed benefit. Treatment of the program is done with the use of innovative, expensive active ingredients. Treatment is carried out in selected disease and includes strictly defined group of patients.

The content of each drug program is published as an annex to the notice of the Minister of Health on the list of the Reimbursement of Drugs, Food Products for Special Dietary Purposes and Medical Devices. Description of the program include: patient eligibility for the treatment, exclusion and inclusion criteria of the program, drug regimen, method administration, a list of diagnostic tests performed at the patient’s eligibility for the program and necessary to monitor treatment.

Eligible patients for drug programs are treated free of charge.
Currently 14 antibodies are available (Tab.1) in 16 drug programs, especially in cancer, and chronic autoimmune diseases (Tab.2).

Table 2. Drug Programs in Poland

<table>
<thead>
<tr>
<th>Drug Program in Poland</th>
<th>Disease Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>B5</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>B12</td>
<td>Lymphomas</td>
</tr>
<tr>
<td>B32</td>
<td>Crohn Disease</td>
</tr>
<tr>
<td>B33, B34, B35</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>B35, B36, B47</td>
<td>Psoriasis</td>
</tr>
<tr>
<td>B4</td>
<td>Ankylosing spondylitis</td>
</tr>
<tr>
<td>B40</td>
<td>RSV infections</td>
</tr>
<tr>
<td>B44</td>
<td>Severe allergic asthma (omalizumab)</td>
</tr>
<tr>
<td>B46</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>B50</td>
<td>Ovarian cancer</td>
</tr>
<tr>
<td>B55</td>
<td>Colitis ulcerosa</td>
</tr>
<tr>
<td>B59</td>
<td>Melanoma</td>
</tr>
</tbody>
</table>

Table 1. Available MABs in drug programs in Poland (as of June 2014)

<table>
<thead>
<tr>
<th>MAB</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalimumab</td>
<td>Chronic plaque psoriasis</td>
</tr>
<tr>
<td>Bolevacizum</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Metastatic colon cancer, head and neck cancers</td>
</tr>
<tr>
<td>Entanercept (Enbrel)</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Golimumab (Simponi)</td>
<td>Ankylosing spondylitis, psoriatic arthritis</td>
</tr>
<tr>
<td>Infliximab (Inflectra, Remicade, Remsima)</td>
<td>Inflammatory bowel disease, psoriasis, rheumatoid arthritis</td>
</tr>
<tr>
<td>Natalimabum (Tysabri)</td>
<td>Multiple sclerosis, Crohn’s disease</td>
</tr>
<tr>
<td>Palivizumab (Synagis)</td>
<td>Prevention of RSV infections</td>
</tr>
<tr>
<td>Pantumumabum (Vectibix)</td>
<td>Rheumatoid arthritis, Crohn’s disease</td>
</tr>
<tr>
<td>Rituximabum (MabThera)</td>
<td>Non-Hodgkin lymphoma, chronic lymphocytic leukemia</td>
</tr>
<tr>
<td>Ustekinumabum (Stelara)</td>
<td>Moderately to severely plaque psoriasis, familial Mediterranean fever</td>
</tr>
</tbody>
</table>

Pharmacovigilance

Immune responses to therapeutic protein products may pose problems for both patient safety and product efficacy. Immunologically based adverse events, such as anaphylaxis, cytokine release syndrome, so-called “infusion reactions,” and non-acute immune reactions such as immune complex disease could cause termination of the development of therapeutic protein products or limit the use of otherwise effective therapies. Unwanted immune responses to therapeutic proteins may also neutralize the biological activity of therapeutic proteins and may result in adverse events not only by inhibiting the efficacy of the therapeutic protein product, but by cross-reacting to an endogenous protein counterpart, if present. Because most of the adverse effects resulting from elicitation of an immune response to a therapeutic protein product appear to be mediated by humoral mechanisms, circulating antibody (to the therapeutic protein product) has been the chief criterion for defining an immune response to this class of products.

Both patient-related and product-related factors may affect immunogenicity of therapeutic protein products. These factors provide the starting point for an immunogenicity risk assessment. Ideally, these factors should be taken into consideration in the early stages of therapeutic protein product development.

MABs are now established as targeted therapies for malignancies, transplant rejection, autoimmune and infectious diseases, as well as a range of new indications. However, administration of MABs carries the risk of immune reactions such as acute anaphylaxis, serum sickness and the generation of antibodies. In addition, there are numerous adverse effects of MABs that are related to their specific targets, including infections and cancer, autoimmune disease, and organ-specific adverse events such as cardotoxicity.

The most frequently reported in the medical literature adverse effects of treatment with MAB include:

1. Immune reactions: acute anaphylactic, anaphylactoid reactions against the MAB, serum sickness, tumor lysis syndrome, cytokine release syndrome. An example is rituximab or cetuximab, which has been attributed to the development of IgE antibodies against galactose-α1,3-galactose.
2. Infections (e.g. reactivation of tuberculosis). This complication has been described most often after infliximab treatment.
3. Progressive multifocal leukoencephalopathy (PML). Based on clinical data it has been estimated that risk of PML corresponds to about 1 in 1000 patients treated with natalizumab. Additionally, PML was also observed after rituximab and efalizumab therapy.

4. Platelet and thrombotic disorders. An acute, severe, self-limiting thrombocytopenia can be caused by infliximab (TNF-α-specific), efalizumab (CD11aspecific) and rituximab (CD20-specific); however the mechanisms of action remain not clear. Moreover, the serious side effects: thrombocytopenia has occurred in around 3% of subjects receiving alemtuzumab for early multiple sclerosis and can be fatal.

5. Autoimmune diseases (e.g lupus-like syndromes, thyroid diseases, autoimmune colitis). This can be exemplified by the development of anti-nuclear antibodies and antibodies to double-stranded DNA, and also with lupus-like syndromes in patients treated TNF-specific MABs for rheumatic diseases.

6. Cancer. There are theoretical concerns over potential tumorigenicity of TNF specific MABs and IL-12.

7. Dermatitis. The EGFR-specific MABs cetuximab (a chimeric mAb) and panitumumab (rectivix; Amgen) (a fully humanized mAb) commonly cause a skin rash on the face and upper torso, although dermatitis can present as dry skin, pruritus and erythema. The rash is generally mild to moderate, and usually occurs in the first fortnight of therapy.

8. Cytokine storm. In March 2006, a life-threatening cytokine release syndrome occurred during a first-in-human study with TGN1412 (a CD28-specific superagonist MAB), resulting in a range of recommendations to improve the safety of initial human clinical studies with mAbs.

9. Cardiotoxicity. This can be exemplified by cardiac dysfunction caused by trastuzumab, which is most commonly an asymptomatic decrease in left ventricular ejection fraction that tends to be reversible.

Evaluation of the efficacy of biological treatment must be linked to its safety. Meanwhile, only 3% of publications in pulmed database refer to the safety aspects of these drugs.
Biosimilars are a biological product which is highly similar to the reference product notwithstanding minor differences in clinically inactive components. There are not clinically meaningful differences between the biological product and the innovator product in terms of the safety, purity, and potency of the product. Although the terminology varies by jurisdiction in highly regulated markets, the term always refers to a biologic product that is similar to an already approved reference medicine.

Biosimilars are used in many diseases because they allow for the treatment of more patients, are cheaper by up to 30% and allow for the extension of the therapeutic indications.

A wide variety of biosimilars is available, from relatively small molecules such as human insulin or erythropoietin, to complex molecules such as MAbs. The EU has led the way in establishing a regulatory framework for the approval of biosimilars. Under this framework, a total of 16 biosimilars have been approved for use in the EU.

It should be stressed that biosimilars approved to date have been relatively simple biologics to re-create, whereas emerging biosimilars such as MABs therapies – Inflectra and Remsima (Infliximab) have been approved in 2013 – are biologics with higher complexity and therefore show greater variability in quality attributes.

On 22 May 2014, the EMA published a finalised version of its guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues. The revised EMA Guideline is expected to come into force in December 2014 and will replace the current guideline which came into effect in June 2006.

The revised EMA Guideline outlines the general principles concerning the quality aspects of biosimilars containing recombinant proteins and derivatives as active substance(s).

Furthermore, the revised EMA Guideline provides guidance concerning the quality requirements that are to be assessed as part of an application for marketing authorisation of a biosimilar which claims to be similar to an authorised biological product in the European Union (“EU”).

The EMA Guideline outlines the quality requirements for biosimilars in the following areas:

- MANUFACTURING PROCESSES;
- THE BIOSIMILAR COMPATIBILITY EXERCISE FOR QUALITY;
- THE CHOICE OF REFERENCE MEDICINAL PRODUCT;
- ANALYTICAL METHODS;
- PHYSICOCHEMICAL CHARACTERISATION;
- BIOLOGICAL ACTIVITY AND FUNCTION;
- PURITY AND QUALITY ATTRIBUTES FOR RELEVANT SPECIFICATIONS OF THE SIMILAR BIOLOGICAL MEDICINAL PRODUCT.

According to the EMA Guideline, an extensive comparability exercise between the reference medicinal product and the biosimilar will be required to demonstrate that the biosimilar has a similar profile in terms of quality, safety and efficacy to the reference medicinal product. This should include a comprehensive analysis of the proposed biosimilar and the reference medicinal product using sensitive and orthogonal methods to determine any similarities or potential differences in quality attributes.

This analysis should include comparative studies unless otherwise justified. Any detected differences in the quality attributes must be appropriately justified with regard to their potential impact on safety and efficacy.

Furthermore, the EMA Guideline requires extensive state-of-the-art characterisation studies to be performed in parallel on both the reference medicinal product and the biosimilar. These studies will demonstrate that the quality of the biosimilar is comparable to the reference medicinal product.

From 2014 Inflectra and Remsima are included in the reimbursement system in Poland. Main issues related to MAbs biosimilars treatment include:

- COMPLEXITY AND VARIABILITY OF BIOTOIC MANUFACTURING;
- REGULATORY ENVIRONMENT;
- CLINICAL TESTING AND APPROVAL OF BIOSIMILARS, INCLUDING INDICATION EXTRAPOLATION;
- INTERCHANGEABILITY AND AUTOMATIC SUBSTITUTION;
- PHARMACOVAULANCE AND SAFETY.

ECONOMIC CONSEQUENCES OF BIOSIMILARS

Since 2000, the therapeutic market for monoclonal antibodies has grown exponentially. The current “big 5” therapeutic MAbs on the market are bevacizumab, trastuzumab (both oncology), adalimumab, infliximab (both autoimmune and inflammatory disorders, “AID”) and rituximab (oncology and AID) accounted for 80% of revenues. In 2009-2012, the market size of MAbs grew at a CAGR (Compound Annual Growth Rate) of 13%, far higher than the overall growth rate of biopharmaceuticals in the same period. However, we’re now mid-way through the long anticipated decade of patent expiry. A total of around $255bn worth of products are expected to have come off patent by 2016 and patent expiry offers a golden opportunity for the companies looking towards generic and biosimilar development. Patent protection presents differently in different countries of the world.

Below are examples of Erbitux, Remicade and Enbrel.

And so:

1. **Erbitux (Cetuximab)**

Erbitux is a chimeric monoclonal antibody rather confusingly distributed by BMS and Eli Lilly in the United States and by Merck KGaG in Europe. It is a EGFR inhibitor used for treatment of metastatic colon cancer, metastatic non-small cell lung cancer and head and neck cancer. In the US, having generated BMS over $700 million sales in 2012, it was granted a recent patent extension until November 2028.

2. **Remicade (Infliximab)**

In 2013 Remicade generated a tremendous $8.9bn in global sales for distributors Janssen Biotech (USA), Mitsubishi Tanabe Pharma (Japan) and Merck & Co (rest of the world). It’s a chimeric monoclonal antibody against TNF-α which is used to treat autoimmune diseases such as psoriasis, Crohn’s disease and rheumatoid arthritis. Remicade’s patent has already expired in Europe, but has until September 2018 in the United States.

3. **Enbrel (Etanercept)**

Another TNF-inhibitor co-marketed by Amgen, Pfizer and Takeda, Enbrel has a particularly interesting patent story. It was originally set to expire in the United States in October 2012, but a sixteen year extension was granted. However
a biosimilar version has been launched by Indian pharmaceutical company Cipla which claims to be thirty percent cheaper than the innovator. This has raised some concern and serious consideration by the global health sector, and it will be interesting to track Cipla’s progress in this area.

Driven by enhanced economic level, expanded scope of medical insurance reimbursement, as well as lower prices incurred by intensified competition, Chinese MABs market is expected to continue to grow significantly. In 2013-2017, Chinese monoclonal antibody market will grow at 35%, sharing 21.5% of the global monoclonal antibody market in 2017 (9.5% in 2012).

CONCLUSIONS

MAbs treatment is a significant medical and financial problem of each country. The loss of patent protection for referential drugs will allow the introduction of cheaper biosimilars. The introduction of biosimilars in chronic diseases must also take into account the wider aspects of safety of such therapy.

REFERENCES:

1. National Institute for Bioprocessing Research and Training, 25th April 2014
4. De Silva E.S., Smith A., Bending M. Insight into HTA Decision Making behind the EU’s Current crop of Biosimilars, ISPOR Connections, 2014; 20,2: 7-9
Therapeutic proteins: facing the challenges of glycobiology

Abstract

The biologics sector is experiencing tremendous growth worldwide and is fuelled by the launch of a vast product range targeting mainly cancer, autoimmune diseases and hormone/ enzyme disorders. However, biologics are one of the most expensive therapeutics to produce, due to both their inherent structural complexity and variability which challenges their manufacturing process and requires a thorough understanding of the product characteristics. More than one third of therapeutic proteins are glycoproteins such as monoclonal antibodies, cytokines, hormones, enzymes as well as fusion proteins. Glycosylation is a major post-translational modification (PTM) and a tightly regulated critical quality parameter in the production of therapeutic proteins. This review includes a comprehensive overview on critical glycosylation and production parameters of different classes of therapeutic glycoproteins. It highlights the significance of protein glycosylation in product efficacy, stability and immunogenicity as well as in the development and regulation of follow-on biosimilar products which are set to vastly transform the biologics market in the coming decade.

Introduction

Since the introduction of recombinant DNA technologies in the 1980’s the biologics market has experienced rapid growth including the successful launch of a vast variety of products such as cytokines, hormones, enzymes, fusion proteins and monoclonal antibodies (mAbs). By 2018 biologics are forecasted to account for one quarter of all drug expenses worldwide 1. However, despite their growing demand, biologics are one of the most expensive pharmaceutical drugs. Biopharmaceuticals are structurally complex molecules and more than one third of approved biopharmaceuticals are glycoproteins. Glycosylation is the most abundant and most structurally diverse post translational modification (PTM). Other features include amidation, sulfation, hydroxylation and carboxylation in proteins 2. Protein glycosylation in the ER and Golgi results in a complex set of N- and/or O-glycans conferring significant micro- and macro-heterogeneity to the molecule 3. Representative N- and O-glycans are represented in Figure 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Keywords: production parameters, sialylation, Biologics, biosimilars, cell culture, immunogenicity, monoclonal antibodies, N- and O-glycosylation

DOI: 10.7365/JHPOR.2014.5.2

JHPOR 2014, 1, 12-17

S. Albrecht, NIBRT, Dublin, Ireland
M. Hilliard, NIBRT, Dublin, Ireland
P. Rudd, NIBRT, Dublin, Ireland

Figure 1. Representative N- and O-glycan structures.

Complex-type N-glycans (1) are the most abundantly present N-glycan type on therapeutic glycoproteins. These N-glycans can be α-galactosylated [(G0) (i)], mono-galactosylated [(G1) (ii)], di-galactosylated [(G2) (iii)], tri-galactosylated [(G3) (not shown)] and tetra-galactosylated [(G4) (iv)]. Core-fucosylated (iii, iv) and sialylated (ii, iv) and can carry up to four antennas (iv). N-glycans of high-mannose type (2) and hybrid type (3) are generally less frequent. O-glycans on therapeutic proteins are mainly the core 1 type (4). O-glycans can be additionally extended by Gal-GlcNAc repeats and modified by sialylation, fucosylation, sulphation, methylation, or acetylation. Glycans are represented using the Oxford symbol nomenclature 113.
N-glycans are typically composed of a core pentasaccharide unit (Man3GlcNAc2) which is linked via a chitobiose (GlcNAc2) to an asparagine (Asn) residue on the Asn-X-Ser/Thr-protein (serine/threonine) consensus sequence. Pharmaceutical glycoproteins produced in mammalian cell expression systems predominantly carry multi-antennary complex-type N-glycans which can be core-fucosylated and sialylated. O-glycans on pharmaceutical glycoproteins are mainly of the core 1 type (Gal[β1,3]GalNAc) and are attached to the glycoprotein via a Ser/Thr residue. The glycosylations macro- and micro-heterogeneity of proteins can significantly influence product efficacy and immunogenicity and is highly dependent on cell culture and manufacturing conditions and thus, the glycosylation of biopharmaceuticals presents an important quality and safety parameter. The manufacturing process of biologics is therefore challenging, expensive, time-consuming and can take up to 15 years from the pre-clinical phase until final market approval. Regulatory frameworks require the demonstration of proper glycosylation within acceptable variation limits and require the integration of strict and detailed quality control parameters into the manufacturing process.

The recent approval of the first biosimilar antibodies in Europe represents a major landmark in the young history of biologic therapeutics. Additionally, more than 70 mAbs are in pre-clinical development which are expected to have comprehensive market implications such as a significant price reduction in the range of 20-30%. To date, a total of 18 biosimilars within the product classes of human growth hormone, granulocyte colony-stimulating factor (GCSF), erythropoietin (EPO) and TNF-inhibitor have already been approved for use in the EU. Biosimilars can be defined as follow-on products of an innovator biopharmaceutical for which the patent has expired. The approval of biosimilars follows an abbreviated regulatory pathway but comprehensive comparability studies are required as laid out in guidelines issued by the FDA and EMA. Due to the complex nature of biologics and the manifold influences during the production process an absolute similarity cannot be reached. Therefore an extensive dataset derived from pharmacokinetic bioequivalence testing and biophysical characterization is required in order to guarantee safety and efficacy of the biosimilar.

This review includes a comprehensive introduction to the different classes of therapeutic glycoproteins and includes details of the associated critical glycosylation parameters and critical production parameters, such as cell lines and culture conditions. Through our own research activities in the development of high-throughput glycotecnology for quantitative, detailed structural analysis of protein N- and O-glycosylation, we have gained a solid insight into the complexity of post-translation glycosylation and the concomitant challenges of their analytical characterization. We also relay interesting case-studies on the glycosylation variability of therapeutic proteins which show that altered glycosylation does not automatically imply changes in product quality and regulatory rejection. The understanding of the structure-function relationship is therefore a key requirement in the production of biologics.

THERAPEUTIC PROTEIN CLASSES

Pharmaceutical glycoproteins can be sub-divided into different product classes, the largest and best selling of which are the monoclonal antibodies. Other important biologics product classes include glyco-engineered Fc IgG fusion proteins, cytokines, growth factors, hormones and enzymes. The glycosylation heterogeneity of proteins largely determines their therapeutic effect function and should closely resemble human protein glycosylation. In order to obtain a human-like glycosylation pattern most therapeutic glycoproteins are produced in eukaryotic cell lines, such as Chinese Hamster Ovary (CHO), myeloma (NS0) or hybridoma (SP2/0).

Monoclonal antibodies (mAbs)

Therapeutic mAbs are recombinant immunoglobulins (IgG) mainly of the IgG1 subtype which have a monovalent epitope affinity to specific antigens. Antibodies utilised in the treatment of cancer and autoimmune diseases form the main therapeutic areas and constitute about 80% of the total antibody sales in the US. A comprehensive overview on mAbs and their therapeutic use is given in Table 1.
Most therapeutic antibodies are chimeric (suffix -ximab; 70% human), humanized (suffix -zumab: 85-90% human) or human antibodies (suffix -umab: 100% human). These are less immunogenic compared with the initially used murine antibodies (suffix -omb: 100% mouse). IgGs are Y-shaped molecules and have a molecular weight of approx. 150kDa. They are composed of two “heavy” (approx. 50 kDa) and two “light” (approx. 25 kDa) polypeptide chains interconnected by disulfide bonds. The CH2 constant domain located on each heavy chain in the Fc region (i.e. dimeric base of the antibody) has a conserved N-glycosylation consensus sequence at Asn297 (Figure 2). N-glycosylation is mandatory for Fc-receptor binding, which is a key element of antibodies used in cancer therapy. This ability for Fc-receptor binding can be lost by recombinant DNA technology. This results in polypeptides which combine the properties of the originator proteins and often contain an additional linker peptide.

Examples of therapeutic Fc IgG fusion proteins include Alefacept (Amgen®), Abatacept (Orencia®), Belatacept (Nulojox®), Etanercept (Enbrel®) and Rilonacept (Arcalyst®). The most commercially successful fusion protein is the TNFa inhibitor Etanercept with global sales reaching $7.3 billion (USD) in 2010. Etanercept is a dimeric glycoprotein with a mass of approx. 150kDa and is used in the treatment of autoimmune diseases such as rheumatoid arthritis. It is composed of a human TNFa receptor part linked to an IgG1 Fc portion through an O-glycopeptide. Each part of the dimeric molecule carries one N-glycosylation site on its Fc part and two N-glycosylation sites on its TNFa unit. Figure 3 shows the total N-glycosylation profile of Etanercept (Enbrel®) as analyzed in our laboratory. It includes a complex mixture of mono- to tetra-antennary core- and non-core-fucosylated structures which can carry up to two sialic acid residues. The glycan structures were identified by exo-enzymatic sequencing and confirmed by mass spectrometry as described in a later paragraph on glycan characterization. By studying the N-glycosylation site heterogeneity of Etanercept (Enbrel®) we observed that the small biantennary neutral N-glycans were predominantly localized on the Fc part whereas larger tri- and tetra-antennary structures are attached to the TNFa unit. Additionally, 12 occupied O-glycosylation sites carry neutral, mono- and di-sialylated core 1 type structures were localized in the linker region of the fusion protein.

Erythropoietin

Erythropoietin (EPO) is a glycoprotein cytokine which controls and stimulates the production of red blood cells (called erythropoiesis). The therapeutic use of EPO focuses on the restoration of blood haemoglobin concentration upon renal failure as well as the prevention of anaemia in cancer patients undergoing treatment. Recombinant produced therapeutic EPO is a glycoprotein with a mass of approx. 30kDa. It

![Figure 2. Schematic of immunoglobulin G (IgG) indicating the two N-glycosylation sites at Asn297 in the CH2 of the Fc region of the molecule as well as the therapeutic functions mediated by the Fab and Fc of the molecule. C: constant domain; V: variable domain; H: heavy chain; L: light chain; S-S: disulfide bond; bended line: hinge region](image1)

![Figure 3. UPLC analysis of total N-linked glycans from Etanercept (Enbrel®) by HiUC-FLR as performed in our laboratory (A). The glycans were released from the fusion protein by PNGase F and fluorescently labelled. For an instrument-independent comparison, the retention times of peaks are transformed to standardized glucose unit values (GU) by comparing the profile to a dextran hydrolysate ladder (B). Structures were identified by sequential enzymatic digestion as exemplified in Figure 4 for the monosialylated N-glycan fraction from Etanercept (Enbrel®). Adapted from Houel et al 5, with permission from the American Chemical Society.](image2)
contains three N-linked glycosylation sites (Asn 24, 38, 83) which carry sialylated tetra-antennary structures and one O-glycosylation site (Ser 126) which carries mono- and disialylated structures 31. The impact of glycosylation on EPO secretion, stability, half-life and effector functions has been extensively studied 28,29. Full N-deglycosylation resulted in a total loss of EPO biological activity and a loss in resistance to thermal stress 32. Sialylation plays an important role in serum half-life. De-sialylated EPO has a half-life of only 2 min and is subsequently rapidly cleared in the liver via galactosyl receptors of the hepatocytes 31. Pharmaceutical EPO has a half-life of only 2 min and is subsequently cleared in the liver via galactosyl receptors of the hepatocytes 31. Pharmaceutical EPO preparations form a large product family and are sub-divided into different classes based on their glycosylation characteristics. Epoetin-α (i.e. Epogen® and Eprex®) and epoetin-β (i.e. Recormon® and NeoRecormon®) are both produced in CHO cell systems but differ in their glycosylation characteristics 31. It was shown that Eprex® (epoetin-α) has a higher degree of O-acetylation and a higher relative amount of immunogenic Neu5Gc per total sialic acid than NeoRecormon® (epoetin-β) 32,33. Epoetin-β (Dyneup®, withdrawn from the market in 2008) is most similar to human EPO due to its production in human cell lines (HT-1080). Dyneup® has neither any Neu5Gc nor O-acetylation but is the only isoform which contains sialyl-Lewis x epitopes (Slex; [Fuc(α2-3) [Neu5Ac(α 2-3)Galβ1-4]GlcNAc(β-)]β) 32.

Darbepoetin (Aranesp®) is a hypergalactosylated EPO-analogue for which two additional glycosylation sites (Asn 30, 88) have been introduced by glyco-engineering 34. A comparison of darbepoetin alpha to conventional epoetin-α/β is given in Table 2. Darbepoetin can carry up to 22 sialic acid residues compared to just 14 in conventionally produced EPO. This results in an up to four times increased serum half-life and 2.2-fold higher in vivo activity 35-37. However, the in vivo activity does not correlate with the receptor binding affinity. The receptor binding correlates inversely with glycosylation and therefore requires the application of a six to 14-fold higher concentration of darbepoetin to achieve similar maximal receptor binding activity as EPO but allows longer dosing intervals due to its lower clearance rate 38-40.

Other cytokines, growth factors, hormones, clotting factors and enzymes

Therapeutic interferons (IFNs) are glycoproteins of the cytokine family. Approved glycosylated IFNs include IFN-α (Alferon®/Avonex®) and IFN-β (Rebib®). IFN-α contains one potential glycosylation site. Upon introduction of an O-glycosylation site reduced thermal stability was observed whereas the introduction of four N-glycosylation sites resulted in improved serum half-life. Likewise, a higher stability and in vitro availability were observed for glycosylated IFN-β (one N-glycosylation site) compared to non-glycosylated IFN-β 40.

Similar to IFNs, the haematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) is available in its glycosylated (Lenograstim®) and non-glycosylated (Filgrastim®) form. G-CSF is a peptide hormone used in cancer therapy to reduce the risk of neutropenia. Glycosylated G-CSF is produced in CHO cells and carries one O-glycosylation site whereas non-glycosylated G-CSF is produced in E.coli. Although in vitro studies depicted an up to 20-fold increase in activity of the glycosylated analog no differences were observed in vivo 41,44.

Therapeutic hormones, clotting factors and enzymes form large classes of therapeutic glycoproteins. The effects of glycosylation on the stability, in vivo efficacy and serum half-life of these glycoprotein classes were carefully reviewed by Sola et al. 44. In additional studies, the introduction of four additional N-glycosylation sites on follicitropin (Follistim® / Gonal F®), increased both the in vivo bioactivity and the serum half-life of the follicle-stimulating hormone up to twofold 44,45. The introduction of N-glycosylation sites resulted in a higher bipotency compared to the introduction of O-glycosylation sites 46. On the contrary, the affinity of the antithrombotic serine protease drotrecogin-α (Xigris®) to thrombin increased upon selective removal of one of the four N-glycosylation sites (Asn 313) 47. Enzyme replacement therapy is applied in rare lysosomal storage diseases such as Fabry disease in which agalsidase-α (Replagal®) and agalsidase-β (Fabrazyme®) are used successfully. In this case the exposure of mannose/mannose-6-phosphate at the terminals of the six N-glycosylation sites on the glycoproteins are of great importance for the mannose-6-phosphate receptor mediated cellular internalisation of the enzyme 48.

Table 2. Comparison of the structural and pharmacokinetic properties of epoetin-α/β and hypergalactosylated darbepoetin-α 21, 32, 35, 36

<table>
<thead>
<tr>
<th></th>
<th>EPOETIN-α/β</th>
<th>DARBEPOTIN-αβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number amino acids</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Glycosylation sites</td>
<td>3x N-glycans (Asn 24, 38, 83) 1x O-glycan (Ser 83)</td>
<td>5x N-glycans (Asn 24, 30, 38, 83, 88) 1x O-glycan (Ser 83)</td>
</tr>
<tr>
<td>Number sialic acid residues per molecule</td>
<td>up to 14</td>
<td>up to 22</td>
</tr>
<tr>
<td>Stable O-acetylation</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Glycan content per molecule</td>
<td>up to 40%</td>
<td>up to 51%</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>30.4 kDa</td>
<td>37.1 kDa</td>
</tr>
<tr>
<td>Half-life (intravenous administration)</td>
<td>6-9 h</td>
<td>25 h</td>
</tr>
<tr>
<td>Half-life (subcutaneous administration)</td>
<td>19-24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>In vivo activity</td>
<td>2.2 fold higher than epoetin-α/β</td>
<td>6-14x higher than epoetin-α/β</td>
</tr>
</tbody>
</table>

+++ major abundance + minor abundance

Therapeutic proteins: facing the challenges of glyobiology

Glycosylation can modulate the immunogenicity, efficacy, solubility and pharmacokinetic behavior of biopharmaceuticals and was extensively reviewed by Hossler et al. 49. Multiple relations were reported between N-glycosylation and the therapeutic efficacy and immunogenicity of therapeutic proteins, while much less is known about the influence of O-glycans mainly attributed to their in-homogenous chemical nature.

Total N- and O-glycosylation

Glycan macro- and micro-heterogeneity can influence the folding, biological activity, kinetics and stability of therapeutic proteins. As observed for EPO, the total removal of N-glycans resulted in a significant decrease in product secretion, catabolic half-life and in vivo biological activity whereas the removal of the O-linked glycan did not have any effect 50. Conversely, the glyco-engineering of additional N-glycosylation sites on EPO, IFN-α and follitropin resulted in increased biological activity as well as increased serum half-life 51,52. The lack of O-glycosylation on recombinant human granulocyte macrophage colony stimulating factor (rHMG-CSF) resulted in antigenicity and highlighted the role of O-glycans in masking potentially antigenic sites on the protein backbone 53.

Sialylation

Terminal N-glycan sialylation is an important quality parameter which determines the serum half-life of a protein. A 200-fold or more decrease in serum half-life of completely de-sialylated EPO compared to the sialylated reference EPO was observed when injected intravenously in rats 54. Sialylation masks structural determinants such as mannose which are otherwise prone to ligand interaction and thus clearance of the molecule. Sialic acids on the Fc portion of intravenous gamma globulins have been shown to play an important role in the anti-inflammatory properties of the molecules as was demonstrated in a mouse model for serum arthritid 55. The induction of inhibitory FcyRIIB by macroglycopeptides which
consequently leads to the therapeutically desired FcγRIII activation in autoimmune diseases such as rheumatoid arthritis showed to be mediated by sialic acids on human intravenous γ globuline 32.

Sialic acid O-acetylation
O-acetylation of sialic acids has been recognized as an important quality parameter for erythrocytes stimulating agents such as Eprex® and Neorecombin® 33. Due to the increased hydrophobicity and decreased susceptibility to sialidases conferred through O-acetylation an extension in the serum half-life can be assumed 32,53.

Galactosylation
The proportion of α-galactosylated (G0), mono-galactosylated (G1) and di-galactosylated (G2) N-glycans is dependent on cell culture conditions. CHO cells generally result in low galactosylation rates 34. The assessment of terminal galactosylation is required by regulatory authorities. Terminal N-glycan galactosylation is directly related to N-glycan sialylation. The possible impact on CDC activity through involvement in complement C1q binding was shown for rituximab but, overall, variations in Fc galactosylation are not considered to adversely influence product stability or safety 14,55.

Mannosylation and terminal GlcNAc
Recognition of high mannose type N-glycans by mannose receptors and mannose binding lectins as well as the induction of endocytosis of the reticuloendothelial system by terminal Man and GlcNAc promotes an accelerated serum clearance of the respective glycoproteins 56,57. On the other hand it has been shown in vitro that antibodies carrying high-mannose structures (Man5, Man9/9) potentially enhance ADC, decrease CDC and increase the binding affinity to FcyRIIIa 58.

Core-fucosylation and bi-secting GlcNAc
Antibody-dependent cell-mediated cytotoxicity (ADCC) is triggered by communication between IgG-Fc and natural killer (NK) cells and is mediated through the receptor FcγRIIIa expressed on NK. Core α(1,6)-fucosylation of Fc N-glycans negatively affects this effector function 35. The presence of core α(1,6)-fucosylation is inversely linked to the presence of the glycosyltransferase GnT-III, which is responsible for the addition of bisecting GlcNAc. Cell engineering approaches which aim to inactivate core-fucosylation and simultaneously introduce GnT-III succeeded in increasing ADCC by almost 100 fold and thus is an essential step in the manufacturing of ADCC-mediating therapeutic proteins utilized in cancer therapy 60,61.

Non-human glycan epitopes
Non-human sugars on therapeutic proteins are a result of the production cell-line used and can lead to an immunological response. N-glycolylneuraminic acid (Neu5Gc) and terminal α(1,3)-linked galactose are xenoreactive sugars from mammalian cell-lines 36. Candidate cell lines from yeasts, insects and transgenic plants contain additional immunogenic sugars such as α(1,3) core-fucose and β(1,6) xylose 62. Candidate cell lines are a result of the production cell-line used and can lead to an immunological response. N-glycolylneuraminic acid (Neu5Gc) and terminal α(1,3)-linked galactose are xenoreactive sugars from mammalian cell-lines 36. Candidate cell lines from yeasts, insects and transgenic plants contain additional immunogenic sugars such as α(1,3) core-fucose and β(1,6) xylose 62. The pre-clinical assessment of xenoreactive sugars is complicated by their non-immunogenicity in animals. This requires the development of alternative test models such as CMAH (cytidine monophosphate-N-acetylneuraminic acid hydroxylase-like protein) knockout mice 63 which eliminate the biosynthesis of Neu5Gc from all cells mimicking the normal human lack of functional CMAH.

Neu5Gc is considered as an oncofetal antigen 64 and anti-Neu5Gc antibodies in humans have been shown to induce complement-mediated cytotoxicity in the presence of Neu5Gc 65. In the case of EPO, low levels of Neu5Gc (i.e. 1%), induced a negligible immunogenic response whereas levels of 7% of Neu5Gc showed a considerable response 66. Additionally, up to 1% of total human circulating antibodies are directed against α-3-linked galactose 67. Cetuximab-induced anaphylaxis in some areas of the United States could be related to IgG specific for α(1,3)-linked galactose in patient sera 68.

Factors influencing protein glycosylation in biologics production
The glycosylation characteristics of therapeutic proteins are largely determined by culture systems and conditions. A detailed understanding of the production process and the monitoring of glycosylation during manufacturing is therefore required in order to assure product safety and efficiency.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CHO</th>
<th>BHK</th>
<th>NS0</th>
<th>SP2/0</th>
<th>HUMAN</th>
<th>MONOLAYER</th>
<th>PLANT</th>
<th>YEAST</th>
<th>INSECT</th>
<th>BACTERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactosylation</td>
<td>+</td>
</tr>
<tr>
<td>Mannosylation</td>
<td>-</td>
</tr>
<tr>
<td>Core Fucosylation</td>
<td>+</td>
</tr>
<tr>
<td>Bisecting GlcNAc</td>
<td>+</td>
</tr>
<tr>
<td>Neu5Gc</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 3. Glycosylation characteristics of standard and alternative production cell lines. According to 16,70-73 and research performed in our laboratory.
baby hamster kidney cells (BHK), murine myeloma (NS0) and hybridoma (SP2/0) cells, human cell lines, transgenic animals and milk (e.g. pig, goat). As mammalian cell expression systems are complex, often difficult to scale up and expensive, alternative production platforms based on plants, yeasts, and insects are currently under investigation. An overview on the glycosylation characteristics of cellular expression systems is given in Table 2 and has been extensively reviewed and studied [60,61]. The main disadvantages of CHO, NS0, SP2/0 and transgenic animal/milk is the presence of non-human Neu5Gc and α(2,3) Gal epitope [62]. which can evoke immunogenic responses in humans. Another critical point is the presence of core(α1,6) fucosylation which reduces the ADCC effector function of mAbs. CHO cells lack GTN-III which is responsible for the addition of bi-antennary GlcNAc and results in the increased presence of core-(α1,3) fucose in CHO cell lines and required a new biologic license for the application [63].

The manufacturing mode and processing variables such as α(1,3) Gal epitope [64] which can evoke immunogenic responses in humans. Another critical point is the presence of core(α1,6) fucosylation which reduces the ADCC effector function of mAbs. CHO cells lack GTN-III which is responsible for the addition of bi-antennary GlcNAc and results in the increased presence of core-(α1,3) fucose in CHO cell lines

...
cent detection enables structural quantification but requires glycan derivatization by fluorescent labels (2-amino-5-ethoxybenzamide (2-AB) and 2-amino-5-ethoxybenzamide (2-AA) for HPLC/UPLC and MS detection). 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 22, Matrix-assisted laser desorption ionization (MALDI-TOF MS) and electrospray ionization (ESI) are routinely used for compositional glycan analysis 23.

Combined with mass fragment analysis (MS/MS) these methods result in glycan sequence information based on the formation of diagnostic ions. Another powerful tool for glycan sequence and linkage identification which is routinely used in our laboratory is the enzymatic panel digestion of 2-AB labelled glycans using an array of linkase-deficient recombinant glycosidases, fucosidases, galactosidases, N-acetylhexosaminidases and mannosidase 27. Figure 4 exemplifies our analytical workflow for the exo-enzymatic sequencing of mono-sialylated N-glycans obtained by WAX fractionation of Etanercept (Enbrel) 28 (see Figure 3 for the total N-glycan profile) which allowed the confident assignment of the structures present 29.

Proteolytic cleavage of IgG by using the enzyme IdeS FabRICATOR facilitates the identification of glycan heterogeneity in the Fab and Fc region of monoclonal antibodies 30. GlycoBase and UniCarbDB are two powerful structural databases which have been implemented for the efficient interpretation of LC and MS data 31,32. Furthermore, an automated sample preparation platform has recently been established for the high-throughput IgG N-glycan analysis which results in highly reproducible data and considerably reduces manual sample handling errors 33.

The prediction of O-glycans is more challenging due to the lack of a single conserved sequon for glycan attachment and the lack of a common core structure. The combination of Collision Induced Dissociation (CID), which results in glycan sequence information and Electron Transfer Dissociation (ETD), which provides the identification of the amino acid residue at the glycosylation site presents a powerful MS glycan characterization approach for simple O-glycans as present on therapeutic glycoproteins. 34. Similarly, peptide mapping is used to confirm glycosylation site occupancy in N-glycan analysis while reduced CE-SDS is used as a tool for assessing total glycosylation of protein sub-units 35.

ALTERATIONS IN PTMs, AND THUS GLYCOSYLATION, CAN AFFECT THE HIGH-ORDER STRUCTURE OF PROTEINS

Modifications of protein glycosylation plays an important role during the production process of biologics and biosimilars. In biosimilar production the demonstration of similarity to the innovator product is a key regular requirement. Similarly, the manufacturer of biologics has to prove a reproducible and consistent production process and ensure that the desired glycosylation attributes were achieved. These requirements of controlled production and ensuring that the desired glycosylation attributes are present and immunogenic epitopes are reduced to a minimum. An example of how important it is to control the production process and the desired glycosylation attributes was recently published in a study by Kawauchi et al. on the biosimilar Rituximab. The characterization of protein glycosylation and the importance of controlled production are the “epidemic” incidences of Exep®-induced antibody–dependent red blood cell aplasia (PRCA) which was, amongst other factors, deduced to production-related changes in the carbohydrate profile 36-38. Glycosylation changes between different producers, different production processes and biosimilar versus originator products were repeatedly observed 32,39,40. Differences were observed in the abundance of the mono-fucosylated N-glycans of rituximab and proposed biosimilar Rituximab GP2013 31. However, complementary CDC-ADCC and receptor binding assays of innovator and biosimilar products showed very comparable results. Differences in N-glycan galactosylation levels were observed between trastuzumab and a candidate biosimilar and changes in N-glycosylation site occupancy were observed between tencetepab tissue plasminogen activator (TNK-tPa) and a follow-on product 110. Despite the probable effect of the significantly decreased site-occupancy on the bioactivity of the biosimilar the follow-on TNK-tPa was considered acceptable for marketing 109,110.

Interesting observations were made by Kawa-saki et al. when comparing three epitope α and one epitope β products from two different countries. 111. Although for all products tetra-sialylated tetra-antennary structure were most abundant, significant intra-class differences were observed in the acetylation pattern and presence of smaller structures for epitope α. The pre- and post-production change variability of glycosylation attributes were recently studied for darbepoetin-α (Aranesp®), ritux-imab (Rituxan®/Mabthera®) and etanercept (Enbrel) 112. Significant decreases in darbepoetin-α sialylation by 10%, a 3-fold increase in non-core-fucosylated G0 for rituximab and a 20% decrease in the di-galactosylated structure G2F for etanercept did not result in a market withdrawal of the products.

The question as to which changes in glycosylation attributes are acceptable can thus only be answered on a case-by-case basis and should be done in combination with complementary data.

CONCLUSION

The inherent variability of biological systems challenges the manufacturing process of biologics and biosimilars. The requirements of manufacturing biologics are complex and a thorough understanding of the glycobiology of the product is therefore of importance that biomanufacturing follows quality-by-design (QbD) principles. QbD defines the critical quality attributes (CQAs) of a product and requires the understanding of the association between CQAs and clinical properties 113. Glycosylation is a key quality attribute as it can influence production rate, efficacy and safety of pharmaceutical products. The approval of biosimilars and the approval of changes in the manufacturing process of biologics are strictly regulated. However, the decision of comparability is difficult and cannot be generalized. A state-of-the-art analytical toolbox is a key requirement for the establishment of a more targeted development process. However, the availability and extent of reference-product batches might be limited to the manufacturer. The assessment of comparability and the refining of regulatory guidelines would therefore be greatly facilitated by the existence of data collections on commercialized biologics. The establishment of defined reference standards which integrate knowledge on structural characteristics and structure-function relationship would be very helpful and will definitely move forward the quality of biologics and biosimilar legislation and production.

ACKNOWLEDGEMENTS

The work in our laboratory is supported by the European Commission under the Seventh Framework Programme (FP7) GlycoHIT [grant number 260600], GlycoBioM [grant number 259869], HighGlycan [grant number 278535], GastricGlycoExplorer [grant number 316929], by the Science Foundation Ireland (Alimentary Glyco-science Research Cluster (AGRC) [grant number 08/SRC/B19393). We thank the NI BIRT GlycoSciences group for the scientific discussion relating to this paper and Dr Ciara McManus (NIBRT) for critically reading the manuscript.

ABBREVIATIONS

ADCC, antibody-dependent cellular cytotoxicity; Asn, asparagine; BHK, baby hamster kidney; Blys, B-lymphocyte stimulator; CD, cluster of differentiation; CDC, complement dependent cytotoxicity; CHO, Chinese hamster ovary; CTLA, cytotoxic T-lymphocyte-associated antigen; EGF, epidermal growth factor receptor; EMA, European medicines agency; EPAM, epithelial cell adhesion molecule; EPO, erythropoietin; EPO, erythropoietin; FDA, food and drug administration; Fuc, fucose; GaI, galactose; G-CSF, growth factor granulocyte colony-stimulating factor; Glc, glucose; GlcNAc, N-acetylgalactosamine; Her, human epidermal growth factor; HILIC-FLR, Hydrophilic interaction liquid chromatography with fluorescence detection; IL, interleukin; IgG/E, immunoglobulin G/E; mAb, monoclonal antibody; Man, mannose; Neu5Ac, N-acetyl-neuraminic acid; Neu5Gc, N-glycolycol- neuraminic acid; PNGaseF, peptide N-glycosidase F; RANKL, receptor activator of nuclear factor-kappa B; Ser, serine; Thr, threonine; (S)Lea/x, (sialyl) Lewis a/x epitope; TNF, tumor necrosis factor; UPLC, ultra-performance liquid chromatography; VEGF, vascular endothelial growth factor; WAX, weak anion exchange chromatography.
Therapeutic proteins: facing the challenges of gycobiology

59. Of the macrophage mannose receptor as a 175-kDa complement via the mannose-binding protein. Nat associated with rheumatoid arthritis can activate by Fc N-glycan remodeling in vitro. Biotechnol Prog
61. Asialoerythropoietin is a nonerythropoietic cytokine Gerwein J., Christensen S., Geist M.A., Pedersen L.Ø., Erbayraktar Z., Gokmen N., Yilmaz O., Ghezzi P., Villa w., Coleman T., Kreilgaard M., Torup L., Sager T.,
58. Implications of the presence of N-glycolylneuraminic G
55. CHO production cell line: Expression of antibodies Reff M. Expression of GnTIII in a recombinant anti-CD20 Meng YG., Weikert SHA., Presta LG. Lack of fucose on S
51. characterization, and pharmacokinetic properties of antibodies to unprotected glycosylation sites on G
48. Hone J., Brown D., Reed C., Chung S., Lutman J.,
42. Analysis of Asn-
40. and IgE specific for galactose-α-1,3-galactose. New Mauro D., Slebos RJ., Zhou Q., Gold D., Hatley T., Hicklin
34. Expression of antibodies with N-linked mannose-5 glycans. MAbs Stefanich E., Wong A., Stephan JP., Bayer R. Production, Y
32. Therapeutic proteins: facing the challenges of glyobiology
30. of β-N-acetylglucosaminidase to aid protein N-glycan processing in NS0 and CHO cells. Biotechnol Appl Biochem 1995; 21 (Pt 1): 87-100
29. Process parameter analysis of protein conformation and B
24. Yoon SK., Choi J., Glik L., Glik L. GM. Effect of culture condition on production of therapeutic glycoprotein by chinese hamster ovary cells grown in suspension at 32.5 and 37.0°C. Biotechnol Bioeng 2005; 89: 345-356
8. Hone J., Brown D., Reed C., Chung S., Lutman J.,
7. Specificity of biotinylated hyaluronic acid as an affinity tag for the purification of recombinant proteins. Protein Expr Purif 2011; 76: 7-14
2. Expression of antibodies to unprotected glycosylation sites on CHO production cell line: Expression of antibodies Reff M. Expression of GnTIII in a recombinant anti-CD20 Meng YG., Weikert SHA., Presta LG. Lack of fucose on S
1. Asialoerythropoietin is a nonerythropoietic cytokine Gerwein J., Christensen S., Geist M.A., Pedersen L.Ø., Erbayraktar Z., Gokmen N., Yilmaz O., Ghezzi P., Villa w., Coleman T., Kreilgaard M., Torup L., Sager T.,

28 29

110. Xin H., Chakraborty A., Ahn J., Yu YQ., Dakshinamoorthy DR., Gilar M., Chen W., Skilton SJ., Maizeo JR. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MABs 2010, 2

Immunomodulation as the desired therapy in some cases of allergic diseases

J. Mazurek, Department of Clinical Immunology and Allergology, Military Institute of Medicine

DOI: DOI: 10.7365/JHPOR.2014.5.3
JHPOR, 2014, 1, 32-45

ABSTRACT

There has been a strong belief for many years that there is no pathogenic connection between allergy and autoimmunity. Academic books usually describe the disparate immune mechanisms playing pivotal role in pathogenesis of allergic and autoimmune diseases. A simplified hypothesis of Th1/Th2 balance disorder represents an accepted model of the diseases. Recent findings have suggested that there is no clear dichotomy between allergy and autoimmunity. Both of them result from dysregulation of the immune system. The systematic review of the literature was performed searching electronic databases for the pathologic and clinical intersection of allergic and autoimmune conditions. Research is currently focused on the key elements that regulate the immune response. Mast cells, which play important role in allergic inflammation, make it likely that they have profound effects on numerous autoimmune conditions. Environmental stress and proinflammatory cytokines may activate the protein kinases in both conditions. The presence of autoantibodies in some allergic conditions such as asthma or atopic dermatitis may point out an autoimmune background in some cases. Genetic factors lead the development of autoimmunity and allergy. The infection also may play an important role in the induction of the diseases. Despite the use of more effective anti-inflammatory drugs, the progression of many allergic and autoimmune diseases may not be halted. Better knowledge about the considerable communication between complex signal pathways point out immunomodulation as the key to successful therapy of both allergic and autoimmune conditions.

INTRODUCTION

Allergic diseases are very common and represent a major health problem worldwide. There has been observed an epidemic increase in prevalence of allergy in the last decades in some countries. It is estimated that 10 – 30% of the population is affected.1,2 Because of their chronic, incurable, and sometimes life-threatening course, these diseases may be a significant socioeconomic burden. In many cases the diagnosis and treatment of affected individuals is insufficient and/or inadequate. In spite of great progress in research into the pathogenesis and treatment of allergy in the last few decades, there are still many problems to be resolved. Allergic diseases show a wide heterogeneity involving different organs such eyes, skin, respiratory and digestive tract. Allergic problems present variability in severity and clinical course which are at the present time only poorly defined. More precise definition of the clinical subtypes (phenotypes) of allergic patients appears important and necessary to address the right therapy to the right patient.3 Some authors of academic books underline clear border between allergy and autoimmunity. The typical pathologic pictures would not suggest a similarity in pathogenesis of allergic and autoimmune disorders. Most cases of rhino-conjunctivitis or asthma are characterised by activity of Th2 (T-helper type 2) lymphocytes and Th2-derived cytokines as interleukins: IL-4, IL-5, IL-13 and stimulation of eosinophil-predominant inflammation. On the contrary, putative autoimmune disorders such as rheumatoid arthritis or type 1 of diabetes mellitus is thought to be mediated by Th1 (T-helper type 1) lymphocytes and Th1-derived cytokines as interleukins: IL-2, IFN. The most popular simplified hypothesis of Th1/Th2 imbalance attempts to explain ethnopathology of certain diseases.4,5 However, in recent years, findings of some studies have suggested that there is no clear dichotomy between allergy and autoimmunity. Both of them result from dysregulation of the immune system. In recent years interest of investigators is focused on the key elements that regulate the immune response in many allergic and autoimmune diseases: mast cells, autoantibodies, T-cells, cytokines and genetic determinants.6,7,8,9,10 It is obvious that mast cells play important role in allergic inflammation. But they may have also profound effects on numerous autoimmune conditions. Another factors such as environmental stress and proinflammatory cytokines may activate the protein kinases in both allergic and autoimmune diseases. There are studies in which autoantibodies have been found in some allergic conditions such as asthma or atopic dermatitis and they may point out an autoimmune background in some cases. Some recent discoveries have provided additional insight into roles of Th17 cells and T regulatory cells.11,12,13 It is obvious that genetic factors play an important role in the development and process of immunologic diseases. The studies from recent years suggest a close relation between gene polymorphism of HLA and cytokines and development of autoimmunity and allergy. The gene polymorphisms may act as risk or as protective factors.14,15,16 The role of the infection also may be important in the induction of allergy and autoimmunity.17 In some cases similar clinical manifestations of both immunopathologies are observed and may result sometimes in diagnostic problems. Ever-expanding knowledge about the considerable communication between complex signalling pathways point out immunomodulation as the key to successful therapy of both allergic and autoimmune conditions.1 It also helps to identify promising areas for future research.

RELATIONSHIPS BETWEEN AUTOIMMUNITY AND MAST CELL-RELATED DISEASES

Epidemiological data

Epidemiological data on the coexistence of both types of these mentioned disorders are scarce. Studies of the possible association between allergy and autoimmunity at the population level have come to varying conclusions. For
example, in the last few decades, a positive correlation between the prevalence of asthma and the incidence of type-1 diabetes has been found at the population level, but not in the individual. Some of these immune-mediated disorders are positively associated with the gross national product. In another study, Tirosh et al. analyzed data from nearly 3 years of follow-up of about 450,000 population of Israeli soldiers aged from 18 to 21 years. Studies have shown an inverse correlation between allergic diseases and autoimmunity. The inflammatory bowel diseases, vasculitis, arthritis, and autoimmune thrombocytopenia occurred more frequently in women who have not suffered from asthma, while type-1 diabetes in men without a history of asthma. According to some experts opinions, extrapolating the results of this study to the general population can lead to erroneous conclusions. In the Medline database one can find a few publications that prove a lower incidence of autoimmune diseases in patients with allergy or atopy, or indicate a negligible difference in the appearance of autoimmune disorders in patients with previously diagnosed allergic disease in contrast to controls without allergy. Conversely, there are also reports arguing that there may be a risk of developing autoimmune disease in patients with allergy or atopy, or indicate a negligible difference in the appearance of autoimmune disorders in patients with previously diagnosed allergic disease in contrast to controls without allergy. The inflammatory bowel diseases, vasculitis, arthritis, and autoimmunity are complex diseases. Recent studies have shown the close proximity of the certain genes and autoimmunity. In their clinical course, autoimmunity may show some similarities in their clinical course. The role of T lymphocytes in the disease as: multiple sclerosis, rheumatoid arthritis, bullous pemphigoid, Sjögren’s syndrome, autoimmune thyroiditis, and systemic sclerosis. Other IgE-independent signals can lead to mast cell activation, including the interaction some molecules with the surface receptors FcεRI and III, anaphylatoxins, low molecular weight peptides such as substance P or a calcitonin gene-dependent peptide. Mast cells and B-limfocytes have been found in the increased number in the synovial fluid of patients with rheumatoid arthritis. The increase in mast cell number is strongly correlated with activity of the disease. The studies of a murine model of inflammation demonstrated that transgenic mast cell-deficient mice were resistant to erosive arthritis induced by the arthritogenic antibodies. It is widely known that mast cells are a source of TNF-α, which is the main mediator of inflammation. TNF-α is a major cytokine present in the rheumatoid joints. TNF-α stimulates the production and release of inflammatory factors such as the matrix-damaging proteases, prostaglandins, IL-6 and GM-CSF. Similarly, an increased number of mast cells and elevated levels of tryptase and other mast-cell derived mediators were detected in cerebrospinal fluid obtained from individuals with multiple sclerosis. Mast cells were also observed in plaques and sites of demyelination. Although their presence in tissues affected by an autoimmune process seems to be obvious, there is still debate of their direct participation in the autoimmune process. They differentiate under the influence of different environmental factors, the nature and function of cells may be converted. Observations have shown that during the environmental allergen challenge, transformation of cells releasing IL-17 occurs. An important recent finding (in studies of animal inflammation models) is that initiate Toll-like receptors (particularly: TLR4/immunomodulator) activation can increase Th1- and Th17- types of immune response, which are frequently associated with autoimmune diseases. Recent reviews underline the role of pathogen in activating Toll-like receptors and immunomodulators. Many adjuvants such as alum or Pertussis toxin may induce autoimmune disorder in this way in animal models of inflammation.

Both processes allergy and autoimmunity may show some similarities in their clinical course. Mast cell related conditions and autoimmune syndromes are inflammatory processes caused by dysregulated immune response. Both disorders are complex and result from the interaction between several factors: environmental, genetic and individual. But the immune mechanisms involve similar types of cells, cytokines, antibodies, and mediators. Recent studies have also shown close proximity of the certain genes regulating the occurrence and course of the two types of diseases.

Mast cell is associated mainly with the early phase of the allergic reaction. Antigens interact with the specific IgE molecules already bound to high affinity Fc receptors on the surface of mast cells to induce degranulation. The mast cell releases a mixture of compounds, including histamine, heparin, chymase, tryptase from its cytoplasmic granules. Releasing of mediators determines the course of the early phase of an allergic reaction. But contact with the allergen also provides for the production of a number of mediators and cytokines (prostaglandins, leukotrienes, TNF-α), which will be gradually released and determine the development of the so-called late phase of allergic inflammation, which is very complicated and dependent on the number of cells receptors, cytokines and mediators. The role of mast cells in the pathogenesis of allergic diseases has been well established. However, recent studies have shown the possible involvement of mast cells in the disease as: multiple sclerosis, rheumatoid arthritis, bullous pemphigoid, Sjögren’s syndrome, autoimmune thyroiditis, and systemic sclerosis. Other IgE-independent signals can lead to mast cell activation, including the interaction some molecules with the surface receptors FcεRI and III, anaphylatoxins, low molecular weight peptides such as substance P or a calcitonin gene-dependent peptide. Mast cells and B-limfocytes have been found in the increased number in the synovial fluid of patients with rheumatoid arthritis. The increase in mast cell number is strongly correlated with activity of the disease. The studies of a murine model of inflammation demonstrated that transgenic mast cell-deficient mice were resistant to erosive arthritis induced by the arthritogenic antibodies. It is widely known that mast cells are a source of TNF-α, which is the main mediator of inflammation. TNF-α is a major cytokine present in the rheumatoid joints. TNF-α stimulates the production and release of inflammatory factors such as the matrix-damaging proteases, prostaglandins, IL-6 and GM-CSF. Similarly, an increased number of mast cells and elevated levels of tryptase and other mast-cell derived mediators were detected in cerebrospinal fluid obtained from individuals with multiple sclerosis. Mast cells were also observed in plaques and sites of demyelination. Although their presence in tissues affected by an autoimmune process seems to be obvious, there is still debate of their direct participation in the autoimmune process. They differentiate under the influence of different environmental factors, the nature and function of cells may be converted. Observations have shown that during the environmental allergen challenge, transformation of cells releasing IL-17 occurs. An important recent finding (in studies of animal inflammation models) is that initiate Toll-like receptors (particularly: TLR4/immunomodulator) activation can increase Th1- and Th17- types of immune response, which are frequently associated with autoimmune diseases. Recent reviews underline the role of pathogen in activating Toll-like receptors and immunomodulators. Many adjuvants such as alum or Pertussis toxin may induce autoimmune disorder in this way in animal models of inflammation.

Immunomodulation as the desired therapy in some cases of allergic diseases

Regulatory T cells - Treg - (CD4+CD25+FoxP3+) appear to be responsible for the homeostasis of immune system in the healthy subjects. It is a dominant negative T-cell type that regulates the immune system. Treg cell function might control Th2 mediated inflammation. Downregulation of these cells

Pathophysiological background

Both processes allergy and autoimmunity may show some similarities in their clinical course. Mast cell related conditions and autoimmune syndromes are inflammatory processes caused by dysregulated immune response. Both disorders are complex and result from the interaction between several factors: environmental, genetic and individual. But the immune mechanisms involve similar types of cells, cytokines, antibodies, and mediators. Recent studies have also shown close proximity of the certain genes regulating the occurrence and course of the two types of diseases.

Mast cell is associated mainly with the early phase of the allergic reaction. Antigens interact with the specific IgE molecules already bound to high affinity Fc receptors on the surface of mast cells to induce degranulation. The mast cell releases a mixture of compounds, including histamine, heparin, chymase, tryptase from its cytoplasmic granules. Releasing of mediators determines the course of the early phase of an allergic reaction. But contact with the allergen also provides for the production of a number of mediators and cytokines (prostaglandins, leukotrienes, TNF-α), which will be gradually released and determine the development of the so-called late phase of allergic inflammation, which is very complicated and dependent on the number of cells receptors, cytokines and mediators. The role of mast cells in the pathogenesis of allergic diseases has been well established. However, recent studies have shown the possible involvement of mast cells in the disease as: multiple sclerosis, rheumatoid arthritis, bullous pemphigoid, Sjögren’s syndrome, autoimmune thyroiditis, and systemic sclerosis. Other IgE-independent signals can lead to mast cell activation, including the interaction some molecules with the surface receptors FcεRI and III, anaphylatoxins, low molecular weight peptides such as substance P or a calcitonin gene-dependent peptide. Mast cells and B-limfocytes have been found in the increased number in the synovial fluid of patients with rheumatoid arthritis. The increase in mast cell number is strongly correlated with activity of the disease. The studies of a murine model of inflammation demonstrated that transgenic mast cell-deficient mice were resistant to erosive arthritis induced by the arthritogenic antibodies. It is widely known that mast cells are a source of TNF-α, which is the main mediator of inflammation. TNF-α is a major cytokine present in the rheumatoid joints. TNF-α stimulates the production and release of inflammatory factors such as the matrix-damaging proteases, prostaglandins, IL-6 and GM-CSF. Similarly, an increased number of mast cells and elevated levels of tryptase and other mast-cell derived mediators were detected in cerebrospinal fluid obtained from individuals with multiple sclerosis. Mast cells were also observed in plaques and sites of demyelination. Although their presence in tissues affected by an autoimmune process seems to be obvious, there is still debate of their direct participation in the autoimmune process. They differentiate under the influence of different environmental factors, the nature and function of cells may be converted. Observations have shown that during the environmental allergen challenge, transformation of cells releasing IL-17 occurs. An important recent finding (in studies of animal inflammation models) is that initiate Toll-like receptors (particularly: TLR4/immunomodulator) activation can increase Th1- and Th17- types of immune response, which are frequently associated with autoimmune diseases. Recent reviews underline the role of pathogen in activating Toll-like receptors and immunomodulators. Many adjuvants such as alum or Pertussis toxin may induce autoimmune disorder in this way in animal models of inflammation.
The presence of increased levels of autoantibodies, sometimes specific for a single tissue, is perceived as a hallmark of autoimmunity. However, several reports suggest a possible role for autoantibodies in allergic diseases. Some patients with asthma, allergic rhinitis or atopic dermatitis have impaired sensitivity to β-adrenergic agents. Autoantibodies directed toward the β-adrenergic receptor were found in the serum of some patients with asthma. These antibodies can block the biologic function of the β-adrenergic receptor in vitro. Previous studies have shown that the levels of IgG autoantibodies to cyto-keratin 18, a bronchial epithelial cell antigen, were significantly higher in patients with asthma compared with healthy controls. Also IgG autoantibodies and T-cell reactivity against a common 55-kD antigen shared by platelets and endothelial cells have been found in group of asthmatics. These autoantibodies were mainly restricted to individuals with more severe, glucocorticoids-dependent, non-allergic asthma. Nahm et al reported antibody reactivity against enzyme α-enolase, which is component of bronchial cells. The presence of serum anti-enolase autoantibodies significantly distinguished patients with severe course of the disease and aspirin-induced asthma. Szczeklik et al. found the incidence of antinuclear antibodies in 55% of patients on aspirin-induced asthma, 39% of patients with allergic asthma, 41% of patients with non-allergic asthma in contrast to 11% of the control group. There is theory that antinuclear antibodies do not have a direct role in asthma pathogenesis, but indicate a susceptibility only towards autoimmune processes due to dysregulation of immune system, for example via reducing efficiency of Treg cells, which usually inhibits immune response against autoantibodies. The presence of autoantibodies to β-adrenergic receptors and bronchial epithelium in patients with asthma may demonstrate autoimmune phenomena in allergic conditions, although a causal link between allergy and autoimmunity has not yet been established. It means that a mechanistic link between these antibodies and an allergic condition is yet to be proven.

The role of IgE antibodies in the allergic process is obvious. Some investigation showed that the presence of IgE antibodies, however, is not exclusive to atopic disease. Specific IgE antibodies have been observed in autoimmunity: anti-cyclic citrullinated peptides in rheumatoid arthritis, anti-GAD65 antibodies in type 1 diabetes, anti-TSH receptor antibodies in Grave’s disease, and anti-myelin peptides in multiple sclerosis, although the direct pathogenic role is largely unknown.

The genetic background of allergic and autoimmune disorders is represented by a complex network of interacting genes. Genome-wide screen studies of asthma have identified a several main regions of genome where genetic variants or disease-causing mutation are placed. Moreover genome-wide screen in families with rheumatoid arthritis has similarly shown linkage near the asthma locus on chromosome 2 and the TCR-α locus on chromosome 14. Some findings suggest that important genes or gene families may be common to several inflammatory and immune disorders. The genes are responsible for the production of specific cytokines and mediators what determines the directions of immune response. Previous studies point out toward the transcription factors such as STAT1, STAT4, GATA3, which expression is associated with production of specific cytokines. While STAT1, and STAT4, ultimately lead to release of interferon gamma (IFN-γ), transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α and other cytokines of TH1 response, the transcription factor GATA3 is expressed and promotes further expression of IF-4, IF-5, and IF-10, and B cell-mediated humoral immunity. GATA3 activation also serves to repress IFN-γ secretion. Recent report published in Nature in 2013 indicates possible polymorphisms in a single gene of transcription factor BACH2. Genetic polymorphisms within a single locus encoding the transcription factor BACH2 may be associated with numerous auto- and immune diseases. Assessment of the genome-wide function of BACH2, revealed that it represses genes associated with differentiation of effector cell. These findings identify BACH2 as a key regulator of CD4 T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity. BACH2 is expressed in B cells. Thus, at both cellu-
Allergic inflammation as a target to immunomodulation

Despite remarkable advances in diagnosis and use of potent anti-inflammatory drugs, asthma and many other allergic diseases are still incurable. It seems that progression of airway inflammation may not be halted. Understanding of the mechanisms of determining the course of the inflammatory response may not be halted. Understanding of the genes of determining the course of the inflammatory response molecules and the subsequent chemotactic recruitment of eosinophils is evident feature of severe allergic diseases including asthma, rhinitis, eosinophilic esophagitis and idiopathic hypereosinophilic syndrome.

Both IL-4 and IL-13 are very important cytokines for the tissue accumulation of eosinophils and they are main factors of IgE synthesis by B lymphocytes. Both exert its effects through the special receptor complex (IL-4RA/IL-13Ra1) which then activates the transcription factor STAT-6. It has an important role in activating genes associated with the differentiation of naive T-cells into Th2 cells, airway inflammation, and bronchial hyperreactivity. Studies with soluble IL-4R given in a nebulized form demonstrated an improvement in the course of moderate asthma. However, despite these promising findings subsequent trials have not been as successful and consequently this treatment is no longer being developed. IL-4 and IL-13 promote selective recruitment of eosinophils from the blood into inflammatory tissues via CCR3, a seven-transmembrane-spanning G protein-coupled receptor. Receptor for IL-17 (very important proinflammatory cytokine) has become the newest target for immunomodulatory drugs. For recent years attention of researchers is focused on the chemokine receptors, especially CCR3.

Both IL-4 and IL-13 are very important cytokines for the tissue accumulation of eosinophils and they are main factors of IgE synthesis by B lymphocytes. Both exert its effects through the special receptor complex (IL-4RA/IL-13Ra1) which then activates the transcription factor STAT-6. It has an important role in activating genes associated with the differentiation of naive T-cells into Th2 cells, airway inflammation, and bronchial hyperreactivity. Studies with soluble IL-4R given in a nebulized form demonstrated an improvement in the course of moderate asthma. However, despite these promising findings subsequent trials have not been as successful and consequently this treatment is no longer being developed. IL-4 and IL-13 promote selective recruitment of eosinophils from the blood into inflammatory tissues via CCR3, a seven-transmembrane-spanning G protein-coupled receptor.

Another approach to immunomodulation is targeting transcription factors. Attempting to modulate STAT-6 or GATA-3 and the signaling pathways may be essential to modification of the course of inflammation. But it presents serious challenge to researchers because these molecules are intracellular.

IgE plays a very important role in the pathogenesis of diseases associated with immediate hypersensitivity reactions, including allergic asthma, atopic dermatitis, urticaria, food allergies and others. IgE-dependent symptoms are a result of binding to high-affinity receptors (FcεRI) on mast cells and high-affinity receptors for IgE (FcεRII) on macrophages, dendritic cells, and B lymphocytes. Allergen mole-
Numerous clinical studies have demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Humanized murine anti-TNF-α antibody - infliximab and soluble TNF-α receptor linked to human IgG3-terenecept in patients with severe asthma refractory to treatment with glucocorticosteroids. There were few attempts of treatment with both of these drugs the patients with atopic dermatitis, but without the expected success. However, a following clinical trial with the anti-TNF-α biologic golimumab in patients with severe, uncontrolled asthma reported negative clinical findings. Moreover, this study was terminated early due to unacceptable adverse events including frequent serious infections and eight cases of malignancies in the active-treatment group compared with the placebo group.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma

Immunomodulatory drugs in treatment of allergic disorders

There is a group of patients with severe course of asthma or/atopic dermatitis who does not respond to standard treatments despite the use of maximal dose. Moreover it is well known that steroid therapy does not prevent the airway remodelling in asthmatic patients and does not influence the natural course of the diseases as well as topical steroids in atopic dermatitis. In allergic asthma due to exogenous allergens efficacy of immunotherapy has been confirmed in numerous clinical studies. Whereas in non-allergic, intrinsic asthma the airway inflammation is triggered by complex mechanisms, probably also involving IgE and perhaps, autoimmunity.

In the past, various, potentially immunomodulatory drugs have been still used in chronic urticaria refractory to treatment with glucocorticosteroids. In the past, various, potentially immuno-suppressive drugs such as methotrexate, ciclosporin, gold salts and troleandomycin, have been used in patients with severe steroid-dependent or steroid-resistant asthma. Most of these drugs gave significant steroid-sparing effects. However, numerous adverse events during the therapies were observed. Many studies have failed to demonstrate an unacceptable risk-benefit ratio. GINA report does not recommend these drugs as the standard therapies as well as macrolides nad anti-TNF-α agents. As a novel therapy omalizumab is recommended as add-on therapy in severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma Trial has demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma Trial has demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Humanized murine anti-TNF-α antibody - infliximab and soluble TNF-α receptor linked to human IgG3-terenecept in patients with severe asthma refractory to treatment with glucocorticosteroids. There were few attempts of treatment with both of these drugs the patients with atopic dermatitis, but without the expected success. However, a following clinical trial with the anti-TNF-α biologic golimumab in patients with severe, uncontrolled asthma reported negative clinical findings. Moreover, this study was terminated early due to unacceptable adverse events including frequent serious infections and eight cases of malignancies in the active-treatment group compared with the placebo group.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma Trial has demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Humanized murine anti-TNF-α antibody - infliximab and soluble TNF-α receptor linked to human IgG3-terenecept in patients with severe asthma refractory to treatment with glucocorticosteroids. There were few attempts of treatment with both of these drugs the patients with atopic dermatitis, but without the expected success. However, a following clinical trial with the anti-TNF-α biologic golimumab in patients with severe, uncontrolled asthma reported negative clinical findings. Moreover, this study was terminated early due to unacceptable adverse events including frequent serious infections and eight cases of malignancies in the active-treatment group compared with the placebo group.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma Trial has demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Humanized murine anti-TNF-α antibody - infliximab and soluble TNF-α receptor linked to human IgG3-terenecept in patients with severe asthma refractory to treatment with glucocorticosteroids. There were few attempts of treatment with both of these drugs the patients with atopic dermatitis, but without the expected success. However, a following clinical trial with the anti-TNF-α biologic golimumab in patients with severe, uncontrolled asthma reported negative clinical findings. Moreover, this study was terminated early due to unacceptable adverse events including frequent serious infections and eight cases of malignancies in the active-treatment group compared with the placebo group.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma Trial has demonstrated efficacy and safety of this therapy. A significant reduction in number of exacerbations was observed in patients with severe, non-eosinophilic asthma. Although chronic therapy with macrolides is associated with the risk of population antimicrobial resistance, than it should be reserved to special selected cases.

Humanized murine anti-TNF-α antibody - infliximab and soluble TNF-α receptor linked to human IgG3-terenecept in patients with severe asthma refractory to treatment with glucocorticosteroids. There were few attempts of treatment with both of these drugs the patients with atopic dermatitis, but without the expected success. However, a following clinical trial with the anti-TNF-α biologic golimumab in patients with severe, uncontrolled asthma reported negative clinical findings. Moreover, this study was terminated early due to unacceptable adverse events including frequent serious infections and eight cases of malignancies in the active-treatment group compared with the placebo group.

Omalizumab is a humanized monoclonal antibody directed to the FcεRI binding domain of human IgE resulting in a rapid decline in circulating levels of unbound IgE. Omalizumab does not bind to IgE bound to specific receptors on cells but down-regulates expression of high-affinity receptors by these cells. Omalizumab inhibited early-phase and late-phase allergen-induced asthmatic reactions and reduced serum free IgE concentrations and has progressed through clinical development. In several studies omalizumab has been shown to be beneficial as an add-on therapy in very severe atopic asthma. Cyclosporine has been still used in chronic urticaria refractory to other therapies. Several studies have examined the therapeutic efficacy of macrolides in patients with asthma. Because of their pleiotropic effects: anti-inflammatory and immunomodulatory in addition to antibacterial there were trials of maintenance treatment with low-dose macrolides. The Azithromycin in Severe Asthma
44 Immunomodulation as the desired therapy in some cases of allergic diseases

45

intolerance. Am J Respir Crit Care Med. 1995 Dec; 152 (6 Pt 3): 1753-6

46. Holgate ST. Has the time come to rethink the pathogenesis of asthma? Curr Opin Allergy Clin Immunol 10: 48-53, 2010a

52. Buser WW, Holgate S., Kerwin E., Chon Y., Feng J., Lin J., Lin SL. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013 Dec; 188(11): 1294-302

54. Bousquet J., Cabrera P., Berkman N., Buhl R., Holgate S., Wenzel S., Fox H., Hedgecock S., Blogg M., Cioppa GD. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy 2005; 60: 302-308

Belimumab therapy in systemic lupus erythematosus – the clinical expectations and burdens

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with serious organ involvement and unpredictable outcome. In 1990s B-cell activating factor (BAFF), which induces B cell maturation, survival, switch-class recombination and high-affinity antibodies production was discovered. The extensive research proven the importance of BAFF in SLE pathogenesis in both murine models and humans. In 2011 belimumab, human monoclonal antibody specific for soluble BLyS (B-lymphocyte stimulator) was approved for active, seropositive SLE treatment in addition to standard of care therapy. Belimumab is the first target, biologic therapy formally approved for SLE. To overcome the complexity and heterogeneity of SLE the new rules in clinical trial design were done: restrict inclusion criteria involving only seropositive patients with active disease and implementation of a novel, composed responder index. Despite the success, new medication rises some efficacy concerns: modest clinical effect, no data provided for treatment of lupus nephritis or central nervous system involvement and very high cost.

INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease, with the wide range internal organ involvement, that cause significant morbidity, increased mortality rate and diminished quality of life. Due to its heterogeneity, lack of universal biomarkers and unpredictable course of flares and remissions, it is difficult to construct and to achieve primary end-points in SLE clinical trials. After 50 years of failures in 2011 US Food and Drug Administration (FDA) approved first new, target therapy in SLE – belimumab, which is monoclonal antibody neutralizing BAFF (B-cell activating factor). This review paper presents arguments advocating this therapy from pathogenic and clinical point of view and on the other hands explains its limitations.

Keywords: clinical trials, responder index, systemic lupus erythematosus, belimumab, BAFF, BLyS

DOI: 10.7365/JHPOR.2014.5.4

JHPOR, 2014, 1, 46-51

LYMPHOCYTES B, BAFF AND APRIL SYSTEM IN SLE

B cells play a critical role in autoimmunity and SLE pathogenesis. Under normal conditions B cells develop in the bone marrow and in the peripheral lymphoid organs. Their differentiation into memory cells and antibody secreting plasma cells is mainly antigen-dependent and needs both co-stimulation from T cells, cytokine environment and B-cells survival factors. One of them is BAFF also commonly known as BLyS (B-lymphocyte stimulator). It is a 285 amino-acid type-II transmembrane protein member of tumor necrosis factor (TNF) superfamily, subsequently cleaved a soluble 17-kD biologically active protein (also known as TNF superfamily member 17 – TNFSF17). BAFF was first described in 1999 by three independent groups, and since the very first descriptions was suspected to play a critical role in human B-cells immunity, both in physiology and pathology. BAFF binds to three receptors on B cells: BCMA (B cell maturation), TACI (transmembrane activator and Cofactor of TNF receptor) and BAFFR (BAFF receptor also known as BCRI).

The major source of systemic BAFF are myeloid-lineage cells: monocytes, dendritic cells, macrophages and neutrophils and bone-marrow-derived radiation-resistant stromal cells. Also expression of BAFF by follicular Th cells in germinal centers, is necessary for the development of antigen-specific high affinity B cells. BAFF mainly circulates in trimeric forms. As well multimeric forms of BAFF were described (in ex. clusters of 60-merics), however their influence on in vivo immune response remains to be elucidated. The main importance is now related to function of soluble, trimeric forms. Both, in humans and mouse, BAFF contributes in B cell survival, differentiation of immature B cells to mature B cells, to Ig class switch and antigen specific antibody production, leading to generation of high affinity antibodies. Moreover some studies on mouse models suggest that autoreactive B cells have a greater dependency on BAFF then non-autoreactive B-cells populations.

The other important player in B cells homeostasis is a proliferation inducing ligand known as APRIL. It is a 250-amino acid member of the TNF ligand super family (TNFSF13), which shares homology with BAFF. APRIL is released only in soluble form and binds to two receptors, TACI and BCMA, but not to BAFFR, leading to more pronounced influence of APRIL on plasma cells. APRIL is released only in soluble form and binds to two receptors, TACI and BCMA, but not to BAFFR, leading to more pronounced influence of APRIL on plasma cells. From practical point of view it is important to remember that soluble BAFF inhibition does not influence on APRIL function by TACI and BCMA.

Due to its properties it is not surprising that BAFF is associated with SLE. In animal models Baff-transgenic mice developed severe B cell hyperplasia, hypergammaglobulinemia, multiple autoantibodies, immune-complexes and immune deposition in kidneys. An association of BAFF levels and human SLE also has been documented. The preliminary results indicated that serum BAFF level was elevated in the patients with SLE, and the increased BAFF in SLE existed in the soluble form, which is cleaved from cell surface. The serum BAFF level correlated with serologic abnormalities, including dsDNA titer, however did not correlate with disease activity and severity. However there was a suggestion that the disease activity tools and small number of patients were not sufficient to confirm relation. In the study which included over 200 SLE subjects association between a greater increase in the BLyS level from the previous visit
and a greater increase in the SELENA-SLEDAI (SLE Diseases Activity Index) score at the subsequent visit, and between an elevated BlyS level at the previous visit and a greater SELENA-SLEDAI score at the subsequent visit. These data demonstrate a relationship between circulating BlyS levels and SLE disease activity. Almost 50% and 61% of patients have manifested persistently or intermittently elevated serum BlyS and blood BlyS mRNA phenotypes, respectively in longitudinal observation. Cross-sectional studies demonstrate that serum BlyS levels correlate inversely with nephrotic-range proteinuria in SLE patients. This result lends support to the notion that inhibition of BAFF/APRIL axis is effective in lupus nephritis.

Belimumab therapy in systemic lupus erythematosus – the clinical expectations and burdens

Belimumab (Benlysta) is a first BAFF antagonist approved by FDA. It is a human IgG1 mAb that neutralizes soluble BAFF. However its way to market has been delayed by a phase III clinical trial in SLE with mild and moderate SLE activity confirmed that therapy was safe, but the efficacy end-points were not met. Belimumab was administered intravenously initially at day 0, 14, 28 and then every 28 days until week 48. The primary efficacy endpoint was the response rate at week 52, assessed by SRI 27. A responder was defined as having a reduction of at least 4 points in the SELENA-SLEDAI score, no new British Isles Lupus Assessment Group index A organ domain score (BILAG), no more than 1 new BILAG B organ domain score and no worsening in Physician Global Assessment (PGA) score. A response rate of 46% (p < 0.05) was noted compared with the baseline. At week 52 primary end-point was achieved. Significantly greater responses were noted starting from week 16 for dose 10 mg/kg (except week 20) and from week 28 for dose 1 mg/kg. Moreover the proportions of patients with at least a 50% reduction in prednisone dose were significantly greater with belimumab 10 mg/kg at every visit from weeks 24 to 52. Use of prednisone was significantly greater in the placebo group then in the belimumab group (10 mg/kg) from week 12 to 52. The reduction in risk of flares was shown by the increase of median time to flare, and the risk of moderate to severe flares was significantly reduced in the belimumab group. Early in the study, starting form week 4 and 8 belimumab improved serum complement concentration and decreased dsDNA titer. The BLISS-76 study, the second study which led to belimumab approval for SLE, included 826 patients from US and Europe. Similarly to BLISS-52 primary end-points were achieved by week 52, but SRI did not differ significantly between groups in week 75.

The safety profile of belimumab was similar to that of placebo, with no differences between trial arms in any studies. Poole analysis of these trials revealed benefits of belimumab (10 mg/kg) in the mucocutaneous, musculoskeletal, CNS and vascular organ domains. Also at the post-hoc analyses among the 267 patients with renal involvement at baseline from BLISS-52 and BLISS-76, those receiving mycophenolate mofetil or with serologic activity at baseline had greater renal organ disease improvement with belimumab than with placebo. It seems that the most important predictors for benefits from belimumab treatment are high disease activity at baseline, dsDNA positivity, hipocomplementemia and high dose of steroids. Lately data of the total belimumab exposure over 7 years (double-blind and open-label periods) and 1746 patient-years were published. SLE response rates at week 52 in autoantibody-positive patients: was in placebo, 29%; and in belimumab, 46% (p < 0.05). In the continuation study, 57% of auto-antibody-positive patients had an SRI response by year 2 and 65% by year 7; severe flares occurred in 19% with placebo and 13% with belimumab during the first year, with the annual rate declining to 2%-5% during years 2-7. Anti-dsDNA autoantibodies in patients positive for them at baseline had a progressive decline of 40%-60% from baseline over 2-7 years with belimumab. Corticosteroid use decreased over time with a 50-55% reduction in median dose during years 5-7. Serious and overall annual adverse events rates, including infections, were generally stable or decreased during 7-year treatment.

Finally belimumab (Benlysta) is approved only in Europe at the moment and its price is very high due to the very small patient population. It can be due to the BAF independent autoimmunity pathogenic pathway that can occur in patients with the prolonged BAFF inhibition. Moreover the clinical response assessed by SRI is not consistent with the clinical tools of activity assessment which are not routinely used in the real life. It makes difficult for clinicians to assess response and make decisions for treatment continuation or discontinuation. Also another aspect is a clear explanation for patients what benefits can be expected from this chronic treatment in their health status or particular, specific symptoms. It seems to be mostly intuitive. On the other hand in the real life possibility to reduce glucocorticosteroids dose, and to avoid glucocorticosteroid-related damages, can be important argument for treatment, for both, the patient and the clinician. The next argument, important for remitting-relapsing patients can be prolong time between moderate or severe flares, which lead to hospitalization and cytotoxic treatment induction.
REFERENCES:

Biosimilar drugs – automatic substitution regulations review. Polish ISPOR chapter’s Therapeutic Programs and Pharmaceutical Care (TPPC) task force report

M. Drozd, Department of Applied Pharmacy, Medical University of Lublin
M. Szkutecza-Dębek, Roche Polska Sp. z o.o., Warsaw, Poland
I. Baran-Lewandowska, Department of Pharmacoeconomics, Medical University of Warsaw

ABSTRACT

Objectives: Review of the EU regulations concerning substitution of biological products with biosimilar products.

Methods: The TPPC task force has checked the approach to automatic substitution by WHO, at the EMA level and in countries across European Union. An internet search was performed checking the regulations and direct contact to Regulatory Agencies in all European Union member states.

Results: Based on the research we have obtained directly information from 23 EU Member States and Switzerland. Most of the EU countries do not allow for automatic substitution of the reference biological medicinal product by a biosimilar. Currently some EU countries already have local legal regulations towards automatic substitution of medicinal products in place.

Conclusions: Due to medicinal product complexity in most of the European Union countries the automatic substitution of a reference biological product by a biosimilar product is not allowed. Local regulations are needed in each of the Member States according to EMA guidance.

BACKGROUND

Biological medical products, being comprised of proteins, hormones, monoclonal antibodies and gene or cell therapies are produced with advanced technologies. Currently more and more diseases can be treated with targeted therapies. In order to ensure proper safety and efficacy of the final product the manufacturing process of the biologicals is carefully controlled due to its sensitivity and high level of expertise required. The biosimilar products are developed to be as similar as possible to the reference medicinal product in terms of safety and efficacy and in the European Union EMA is the authority responsible for review of the marketing authorisations for the biosimilars. However the final decision on whether to substitute a reference biological medicinal product is the responsibility of the authorities in each of the EU Member States.

Taking into consideration the complexity of the molecules, manufacturing sensitivity, the potential to induce immunologic reactions, it is especially important for clinicians to be involved in the decisions related to the medication choice and possible substitution.

The TPPC task force worked on a review of regulations towards biosimilar drugs reimbursement and definitions in 2011-2012. As a continuation of that discussion the automatic substitution regulations are currently in scope of our interest.

METHODOLOGY

In order to prepare the review of the regulations regarding automatic substitution of a reference biological product with a biosimilar product at EMA and in each of the European Union Member States we worked in parallel and on one hand we performed an internet search and on the other; we contacted directly the Regulatory Bodies in EU Member States. In relation to the internet search there was initially no limitation towards the countries in scope, however due to Poland being an EU member state, the defined scope of countries of interest was specially focused on EU.

Prior to different databases search we have checked for the difference between interchangeability, switching and automatic substitution terms.

Then the databases have been reviewed to identify published regulations concerning reference, biosimilar and biosimilar drugs automatic substitution. The search done by TPPC focused on the following words: “biosimilars”, “biological drug”, “biosimilar drug substitution”, “automatic substitution”, “substitution guidelines”, “substitution regulations” and it was conducted using the Internet.

In parallel, we emailed all European Union Member States’ Regulatory Agencies asking for information regarding local regulation towards automatic substitution. The same predefined set of questions was send to the Agencies in order to gather information if the automatic substitution is allowed and if the topic is regulated by legal Acts at country level. In case that such regulation exists we asked for reference documents or website link to access such documents.

FINDINGS

According to European Commission document related to biosimilar products interchangeability is a medical practice of changing one medicine for another that is expected to achieve the same clinical effect in a given clinical setting and in any patient on the initiative or with the agreement of the prescriber.

Automatic substitution is a practice of dispensing one medicine instead of another equivalent and interchangeable medicine at the pharmacy level without consulting the prescriber.

The term switching is related to the decision taken by the treating physician to exchange one medicine for another with the same therapeutic intent in patients who are undergoing treatment.
WHO has recognized that a number of important issues associated with the use of similar biotechnological products (SBPs) need to be defined by the national authorities. They include, but are not limited to, the following: intellectual property issues; interchangeability and substitution of SBPs with RBPs; and labelling and prescribing information.

EMA has only responsibility to review the marketing authorization submission and the decision whether to substitute or not the reference biological product with a biosimilar is on the responsibility of each of the EU Member States competent authorities.

Since October 2011, pharmacists in Germany may substitute biotechnologically manufactured products among each other which have been approved with reference to the same reference product and which have been produced by the same manufacturer with the same manufacturing process. The only difference between such substitutable products is their trade name. At the point in time of publication of the European Commission consensus information paper, no country had explicitly authorized the substitution of biological products from different manufacturers, and a number of EU Member States have put legal, regulatory, and political provisions in place that prevent this practice.

The Association of British Pharmaceutical Industry (ABPI) working on the biosimilar topic took into consideration EMA guideline on biosimilars from 2008 and the EMA guidance published in 2012 which states that the decision to treat a patient with a reference or a biosimilar medicine is only to be taken following the opinion of a qualified healthcare professional. ABPI recommends that automatic substitution should not apply to any biologic; this includes automatic substitution of a biosimilar for its reference product. Substitution should only ever occur with the knowledge and explicit prior consent of the treating physician. The part of the project based on direct answers from Regulatory Agencies is described in table 1 from 31 countries we contacted we have obtained the answer from 21 countries. Based on the obtained information it is clear that the automatic substitution is not allowed in Austria, Germany, Bulgaria, Czech Republic, Latvia, Luxembourg, Belgium, Denmark, Estonia, Finland, Hungary, Italy, Norway, Portugal, UK, Slovenia, The Netherlands and Switzerland; however most of the countries have no local regulations towards automatic substitution. In Italy the choice is under the decision, control and responsibility of the pharmacist. Written criteria for drug substitution are published in Finland and Hungary. In Finland the automatic substitution (generic substitution in pharmacies) of biological products is not allowed. The criteria for substitution of medicines are described in the section 5c of the Medical Act and practically exclude automatic substitution by biosimilars. Based on those criteria a list of substitutable products is prepared 4 times per year. In Finland biosimilar products are not treated as “generic medicinal products”, which could be substituted. In Sweden there is no legislation that excludes a biosimilar product from the substitution system, however due to the complexity of the biological products up to now no biosimilar product has been included on the substitution list. In Belgium there is a publicly available report prepared by the Federal Health Care Knowledge Centre (KCE): “Barriers and opportunities for the uptake of biosimilar medicines in Belgium” and the substitution (the passage of a specialty subject to a prescription to another specialty by the pharmacist, without consulting the doctor) is not at all. In France, according to the new legal regulation, since January 2014, substitution is planned to be allowed only in a restrictive way: when initiating a course of treatment, and if the biosimilar belongs to the same grouping as the prescribed product, known as a “similar biologic group” and only when the physician hasn’t marked on the prescription that it is a not substitutable product. According to the French law it is clear that patients who have already started treatment on a biological medicine must not have their medicine substituted by a pharmacist. In Czech Republic there is no specific legal regulation towards the automatic substitution problem. However, most of the medical societies in the Czech Republic have official recommendations regarding the suitability of substitution between the reference biological product and biosimilar, not recommending automatic substitution. From Latvia we obtained the information that according to the State Agency of Medicines of the Republic of Latvia there is no automatic substitution of reference biological product by biosimilar product allowed and there are no legal regulations regarding to automatic substitution by biosimilar products in Latvia. In Austria and Germany the automatic substitution is not allowed by law. Mainly due to the differences between the original product and the biosimilar cannot be done at pharmacy and the replacement may only be expressly ordered by a doctor.

In Lithuania, automatic substitution of biological product by biosimilar product is allowed only in case, when biosimilar product has the same INN. Despite EMA guidance that the substitution should be regulated at each Member State level still some of the countries don’t have local regulations in place. We draw such conclusion based on the internet search we have performed and the answers we have obtained from the regulatory agencies in the EU countries.

Discourse

According to our search, Poland has no local regulations towards automatic substitution of reference biological products by biosimilar ones. From most of the countries we obtained an answer to our question confirming that they do not have no automatic substitution in place, even in case they are not having local regulations. Due to already practical experience with biosimilar products in Australia we also checked the status regarding automatic substitution there. There were similar to our findings in EU. PBS does not permit automatic substitution of biosimilars with different INN. The pharmacists cannot substitute a glycosylated biosimilar for its comparator drug. Where the drug has the same INN, then the cheapest product can be supplied unless the prescriber stipulates the use of a particular brand.

The applicant of the biosimilar marketing authorization must submit a risk-management pharmacovigilance plan and biosimilars are priorities for pharmacovigilance. The approval pathway for a biosimilar is based on the determination of its

<table>
<thead>
<tr>
<th>Country</th>
<th>Automatic substitution allowed by biosimilar (same or different INN)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>No</td>
</tr>
<tr>
<td>Belgium</td>
<td>No</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>No</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>No</td>
</tr>
<tr>
<td>Denmark</td>
<td>No</td>
</tr>
<tr>
<td>Estonia</td>
<td>No</td>
</tr>
<tr>
<td>Finland</td>
<td>No</td>
</tr>
<tr>
<td>France</td>
<td>No</td>
</tr>
<tr>
<td>Germany</td>
<td>No</td>
</tr>
<tr>
<td>Greece</td>
<td>Information not clear</td>
</tr>
<tr>
<td>Hungary</td>
<td>Information not clear</td>
</tr>
<tr>
<td>Italy</td>
<td>No</td>
</tr>
<tr>
<td>Lithuania</td>
<td>No</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>No</td>
</tr>
<tr>
<td>Malta</td>
<td>No</td>
</tr>
<tr>
<td>Netherlands</td>
<td>No</td>
</tr>
<tr>
<td>Norway</td>
<td>No</td>
</tr>
<tr>
<td>Portugal</td>
<td>No</td>
</tr>
<tr>
<td>Slovenia</td>
<td>No</td>
</tr>
<tr>
<td>Spain</td>
<td>No</td>
</tr>
<tr>
<td>Switzerland</td>
<td>No</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>No</td>
</tr>
<tr>
<td>United States</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. Automatic substitution – practice and regulations in EU

Biosimilar drugs – automatic substitution regulations review, Polish ISPOR chapter’s Therapeutic Programs and Pharmaceutical Care (TPPC) task force report
similarity to an approved biological as fewer patient data than were required for the initial approval of the reference product and this create patient data than were required for the initial approval of the reference product. The same principle is related to the patient who should be notified of the substitution. The substitution and the physician should keep records of the substitution.

CONCLUSIONS

Due to the medicinal product complexity in most of the European Union countries the automatic substitution of a reference biological product by a biosimilar product is not allowed. Local regulations are needed in each of the Member States according to EMA guidance.

ACKNOWLEDGEMENTS

We would like to express our gratitude for providing answers to our questionnaire to: Anniek Ryckman, Federal agentgen van geheimezaken en gezondheidszaken, Belgium; Zlatna Georgieva, Deputy Executive Director, Bulgarian Drug Agency, Bulgaria; Jitka Ždíčklová Press and information department State Institute For Drug Control; Czech Republic; Deirdre Mannion, BSc, (Pharm.), Ph.D. Head of Unit, PharmiBiotech, Danish Health and Medicines Authority, Medicines Licensing & Availability Unit, PharmaBiotech, Danish Health and Medicines Authority; Siim Sustre, Specialist of Department of Biologicals, State Agency of Medicines, Estonia; Sami Paaskoski, Senior Pharmaceutical Inspector, Finnish Medicines Agency Fimea, Finland; Veronika Horvath dr.scientific advisor, Information and Utilization Department, National Institute of Pharmacy Directorate of National Institute for Quality and Organizational Development in Healthcare and Medicines, Hungary; Jóhann M. Lennhardsson, Cand. Pharm. Head of Licensing Unit, Deputy Director, Icelandic Medicines Agency, Iceland; Stephen Walker, Customer Service and Scheduling Administrator, Irish Medicines Board, Ireland; Paolo D. Siviero, Agenzia Italiana del Farmaco, Italy; Mag. pharm. Brigitte Batliner, MPH, Liechtensteinische Landesverwaltung, Amt für Gesundheit, Amtsapotheke, Liechtenstein; Sarimente Pengerote The State Agency of Medicines, Latvia; Kristina Garule, Head of the Medicines Reimbursement Department, National Health Insurance Fund of the Republic of Lithuania; Laurent Mertz, Attaché de Gouvernement, Ministère de la Santé, Service juridique, Luxembourg; Karen Bouwman, PR and Communications advisor, Medicines Evaluation Board, The Netherlands; Anja Júlia Duarte, Centro de Informação, Information Centre, INFARMED - Autoridade Nacional do Medicamentos e Produtos de Saúde, I.P. National Authority of Medicines and Health Products, Portugal; Karin Bouwen, PR and Communications advisor, Medicines Evaluation Board, The Netherlands; Lidija Dobrota, Mpharm Javna agencija Republike Slovenije za zdravila in medicinske priprave, Republic of Slovenia; Anna Hillgren, PhD, Pharmaceutical Assessor, Department of Pharmaceutics and Biotechnology, Medical Products Agency, Sweden; Ben Scott, Customer Services, External Relations, Medicines and Healthcare Products Regulatory Authority, United Kingdom; Cordula Landgraf, PhD, Head of Networking, Swissmedic, Swiss Agency for Therapeutic Products, Switzerland.

REFERENCES

1. Drodz M., Szultek-Międzyń M. Biosimilar drugs – reimbursement regulations. Polish ISPOR chapter’s Therapeutic Programs and Pharmaceutical Care (TPPC) task force report. JPOR 2013, 1, 84-91; DOI: 10.7365/JPOR.2013.1.1
5. Section 129, subsection 1 of the Fifth Book of the German Social Code (SGB V) in connection with the National Association of Statutory Health Insurance Funds and the German Pharmacists’ Association on the supply of medicinal products in the version of 1 February 2011, which is based on section 129, subsection 2 of SGB V.
The Polish Expert Group Position Statement on the safety of biological treatments with monoclonal antibodies and fusion proteins

K. Jahnz-Różyk, Department of Immunology and Clinical Allergology, Military Institute of Medicine in Warsaw, Poland
E. Wiesioł-Szewczyk, Department of Immunology and Clinical Allergology, Military Institute of Medicine in Warsaw, Poland
A. Filipowicz-Szpurnowska, Head of the Coordinating Team for Biological Agents in the Treatment of Rheumatic Diseases, Institute of Rheumatology in Warsaw, Poland
J. Gil, Department of Gastroenterology, Military Institute of Medicine in Warsaw, Poland
P. Grieb, Department of Experimental Pharmacology, Mossakowski Medical Research Centre of the Polish Academy of Sciences in Warsaw, Poland
Wiesław W. Jędrzejczak, Department of Haematology, Oncology and Internal Medicine, Medical University of Warsaw in Warsaw, Poland
W. Oczarek, Department of Dermatology, Military Institute of Medicine in Warsaw, Poland
T. Pluśa, Department of Internal Medicine, Pulmonology and Allergology, Military Institute of Medicine in Warsaw, Poland
L. Rutkowska-Sak, Institute of Rheumatology in Warsaw, Poland
G. Rudyńska, Department of Gastroenterology, Central Clinical Hospital of the Ministry of Interior in Warsaw, Department of Nursing and Midwifery, Jan Kochanowski University in Kielce, Poland
J. Szaflarski, Department of Ophthalmology, Independent Public Clinical Hospital of Ophthalmology in Warsaw, Poland
P. Wronicki, Department of Oncology, Maria Skłodowska-Curie Institute of Oncology in Warsaw, Poland
M. Łazicka-Gałecka, Department of Ophthalmology, Independent Public Clinical Hospital of Ophthalmology in Warsaw, Poland

Abstract

Objective: The first biological therapeutics have already reached their patent expiration dates and corresponding biosimilars have been approved by the EMA and FDA. The approval of products similar, but not identical to already approved by the EMA and FDA. The approval dates and corresponding biosimilars have already reached their patent expiration dates.

Methods: A Group of 13 experts involved in various aspects of biological therapies in Poland was established. Modified Delphi method of voting was performed to achieve consensus regarding the most important aspects of biological treatments in Poland, with particular concern regarding biosimilars.

Results: Ten final statements were discussed and voted upon. The statements cover general aspects of biosimilars, including expected cost-benefit ratios, extrapolation of clinical indications, interchange, switching, patient information and the requirement of patient consent. The state of post-marketing pharmacovigilance of biologicals (innovative ones as well as biosimilars) was also discussed.

Conclusions: The Expert Group agreed that introduction of biosimilars is an important achievement in biological therapies, with the potential to reduce treatment costs and increase their availability. Experts also agreed that the safety of biological treatments should be monitored more carefully in Poland. There is an unmet need in Poland for the creation of a registry collecting data needed for the assessment of safety and efficacy of both biosimilars and their reference products in accordance with the experience and principles introduced in other European countries.

Introduction

For over 15 years, biological drugs have been a vital therapeutic tool used by experts in multiple fields of medicine, such as oncology, haematology, rheumatology, gastroenterology, transplantation, ophthalmology and allergology. There are a (7) number of indications where biological drugs are administered chronically, particularly in the treatment of inflammatory rheumatologic disorders or inflammatory bowel disease. With the progress of medical knowledge, both the regulatory and evidence-based indications for the use of biological drugs have extended. Multicentre clinical studies have shown unequivocal proof of the effectiveness of innovative therapies; however, long-term follow-up and pharmacovigilance are necessary to assess the safety profile of medications, especially with regard to delayed adverse reactions, such as the risk of developing cancer, cardiovascular complications or autoimmune reactions.
A modified Delphi process was implemented in order to develop the position statement. In the first phase, an open online debate was held concerning selected aspects of biological therapy. Taking into account the specificity of Polish regulations (coordinating teams), the issues of safety and biological treatment regimens in different indications, treatment costs, the outlook for the introduction of biosimilar drugs and the extrapolation of indications. Subsequently, 10 issues out of those discussed in a direct debate were selected at an Expert Group meeting. In the next phase, these issues were subject to closed online voting. Each of the issues was evaluated separately and independently by particular experts. Issues were rated from 0 (I completely disagree with the presented opinion) to 10 (I fully support the presented view). Thirteen experts participated in the voting. The mean values and standard deviations (SD) were calculated for the obtained results. The maximum concordance rate is defined by the highest mean and the lowest SD.

RESULTS

Ten issues were identified to describe the current state of knowledge and the experts’ attitudes concerning biological therapy, and treatment with innovative and biosimilar medications in the Polish setting. The results are presented in table 1.

DISCUSSION

Biological drugs are increasingly used in various indications and will undoubtedly constitute one of the most dynamically developing therapeutic pathways of contemporary medicine, considering both: innovative therapies, and the possibility of registering biosimilar drugs, i.e. analogues of innovative drugs with expired patents. Long-term administration of biological drugs is not uncommon, which involves significant costs for the patient and/or state budget.

Therefore, convincing experts that the introduction of biosimilar drugs yields economic benefits is an important element of the presented position statement (statement 1). It is a way to

WORK PHASES

Method

Definitions

In a broad sense, a biological drug is a product manufactured by living organisms. The presented position statement concerns biological drugs—monoclonal antibodies and fusion proteins derived from cell cultures in vitro using genetic engineering.

A biosimilar drug is similar, but not identical, to a registered reference drug with regard to quality, safety and efficacy (WHO). Biosimilarity status is achieved when procedural requirements specified by the FDA and EMA are met. The proposed pathway suggests a preliminary lack of clinically significant differences between a biosimilar and its reference analogue in terms of safety, purity and potency (FDA) or quality, safety and efficacy (EMA) [2,22,27,28]. It is noteworthy that these regulations are innovative in nature and have been developed specifically for biosimilar drugs, which emphasizes their distinctness from generic drugs.

A biosimilar pharmaceutical product (‘me-too’ biological, non-innovative biological) is a medication that targets the same antigen as an innovative drug but whose equivalence with regard to pharmacokinetics, pharmacodynamics, efficacy, safety and immunogenicity has not been proven in accordance with EMA or FDA standards. ‘Me-too’ biological medicinal products have been excluded from analysis in the presented position statement.

The following definitions were adopted in the discussion. Interchangeability was defined as the administration of the same active ingredient produced by different manufacturers (where the administration of a biological or biosimilar drug is random) allowing for automatic substitution of one drug for another. Switching was defined as a switch from one administered drug to another (with the same active ingredient but produced by different manufacturers) upon the decision of the physician.

Expert Group

The position statement was developed in collaboration with national consultants (in rheumatology, haematology, and gastroenterology), heads of coordinating teams for biological treatment (in rheumatology, allergology, and dermatology), experts in different fields of medicine (rheumatology, allergology, gastroenterology, oncology, dermatology, ophthalmology, clinical immunology, and experimental pharmacology) who, before the meeting, had agreed to participate in the Expert Group. A SWOT (strengths/weaknesses/opportunities/threats) analysis was performed for the appointed Expert Group (supplementary materials).

The Expert Group included:

- Prof. Karina Jahnez-Różyk (allergologist, clinical immunologist) – Head,
- Prof. Anna Filipowicz-Sosnowska (rheumatologist),
- Prof. Jerzy Gil (gastroenterologist),
- Prof. Pawel Grieb (experimental pharmacologist),
- Prof. Wiesław W Jędrzejczak (haematologist),
- Witold Owczarek, MD-PhD (dermatologist),
- Prof. Tadeusz Płusa (allergologist, pulmonologist),
- Prof. Lidia Rutkowska-Sak (paediatrician, rheumatologist),
- Prof. Grazyna Rydzewska (gastroenterologist),
- Prof. Jerzy Szaflik (ophthalmologist),
- Prof. Witold Tlustochowicz (rheumatologist). On 13th May 2014, prof. Tlustochowicz announced his decision to withdraw from the Expert Group,
- Prof. Piotr Wysoki (oncologist),
- Monika Lazićka-Gałecka, MD-PhD (ophthalmologist),
- Ewa Więsiks-Szewczyk, MD-PhD (rheumatologist, clinical immunologist).

A biosimilar drug is similar, but not identical, to a registered reference drug with regard to quality, safety and efficacy (WHO). Biosimilarity status is achieved when procedural requirements specified by the FDA and EMA are met.

TABLE 1. The Polish Expert Group Position Statement on the safety of biological treatments with monoclonal antibodies and fusion proteins

<table>
<thead>
<tr>
<th>STMT</th>
<th>DELPHI SCORE</th>
<th>MEAN</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The introduction of biosimilar-monoclonal antibodies/fusion proteins (BS-mAb/FP) is associated with benefits, mostly due to reduced costs and increased availability of the treatment</td>
<td>9.41±1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Although BS-mAb/FP may be applicable in indications and/or patient populations approved for the reference drug despite the lack of formal studies, such extrapolations must be approached with caution</td>
<td>7.89±1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The current state of knowledge does not allow for recommendations to interchange reference drugs with their biosimilar analogues</td>
<td>8.00±1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Patients should be informed of such switching</td>
<td>7.5±1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Patients should consent to such switching</td>
<td>8.1±1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Intolerance following treatment with mAb/FP (reference drug) disqualifies the patient from any attempts at treatment with BS-mAb/FP and vice versa</td>
<td>7.61±1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. The lack of effect following treatment with mAb/FP (reference drug) disqualifies the patient from any attempts at treatment with BS-mAb/FP and vice versa</td>
<td>8.23±1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. There is a need for closer monitoring of adverse events caused by mAb/FP and/or BS-mAb/FP treatment than that currently in place</td>
<td>8.23±1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. There is a need to create a national registry of patients receiving biological treatment</td>
<td>7.6±1.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
generate competition, potentially leading to price reduction of innovative therapies offered by monopolistic manufacturers. This is because any newly introduced biosimilar product would be cheaper than its reference analogue \(^{12}\) for at least 2 reasons. Firstly, which may be observed at the level of molecular studies/fundamental sciences, there would be no need for a creative but often ineffective search for a target molecule, one out of many with potentially beneficial effects. Instead of this risky path, the manufacturers’ task would be only to find their own way of producing the medicinal product with already established therapeutic properties and clinical indications. Secondly, at the clinical study level, there would be limited requirements for conducting these studies to prove bioequivalence and bioeffectiveness comparable with those of the reference drug.

Reduced costs of therapy would eventually lead to the expansion of the patient population receiving treatment. For example, in the Polish setting this could translate into the inclusion of rheumatoid arthritis patients with moderate disease activity, persistent despite treatment with conventional DMARDs (DAS 28 3.2–5.1) into the biological treatment programme, which would be in accordance with global standards. According to the recommendations of international associations, physicians should be aware of the costs of administered treatments. It is the physician who is directly responsible for treating the patient, and the physician’s ultimate goal is to provide the patient with an optimum therapeutic strategy, the selection of which—especially in the case of chronic diseases—requires joint decisions and consequently, shared responsibility on the part of the patient. According to EULAR, a biosimilar drug is defined as an equivalent therapeutic option for patients qualified for biological treatments with monoclonal antibodies and fusion proteins (statement 9). On the one hand, it seems that the practice of reporting adverse reactions is uncommon despite the existing relevant legal regulations. On the other hand, the scope of questions concerning safety aspects is, in many drug programmes, insufficient. Moreover, too-short patient follow-up periods in the programme lead to difficulties in the detection of potential delayed adverse reactions, where the cause-and-effect relationship between drug administration and the event may not be direct. This includes reactions such as cardiovascular complications, autoimmune disorders or neoplastic growth. One example of this type of correlation among conventional drugs is exposure to cyclophosphamide, which increases the risk of bladder cancer for life. The lack of data concerning the safety of treatment with innovative drugs in Poland makes it difficult to establish a reference point to compare the safety of treatment with biosimilar products. The available knowledge on this topic is derived mainly from data collected from populations in other European countries. The debate over this issue revealed a clear divergence in expert opinions as to the possible solutions to this problem (statement 10). Worldwide practice and literature data suggest that most safety data are collected through registries \(^{8,24}\). The registries should meet specific formal requirements with regard to the recruitment of the study and control populations, follow-up duration, and the assessed and reported clinical parameters \(^{8}\). The question of whether drug programmes, take the form of observational studies or of a broad national registry remains unanswered.

In statements 2, 3 and 4, the experts addressed controversial issues associated with the introduction of biosimilar drugs: the extrapolation of indications, interchangeability and switching between innovative drugs and their biosimilar equivalents.

The extrapolation of clinical indications consists in the use of a biosimilar drug for the indication for which the reference drug is used, but for which the biosimilar has not been assessed. Both the EMA and FDA are in favour of the extrapolation of indications \(^{11}\). The extrapolation of indications seems possible, however, more experience in this field is required. Extrapolation is more justified in cases where both the underlying pathogenesis of the disease and the mechanism of drug action are identified. Nonetheless, a given drug may display different modes of action in different therapeutic indications, e.g. in oncology and rheumatology; therefore, the FDA and EMA admit the need for conducting separate studies for specific indications \(^{1}\). In such cases, the decision on whether or not to extrapolate the indication should be made on a case-by-case basis \(^{11}\).

It is necessary to include the limitations of extrapolation in clinical practice, e.g. those associated with populations described as particularly sensitive, such as the paediatric population or patients with inflammatory bowel disease \(^{8,12}\).

Another controversial issue is switching from an original biologic drug to a biosimilar and vice versa with the consent of the physician, or interchangeability (automatic substitution) at the pharmacy level. Although this does not seem to be a problem for experimental pharmacologists, medical practitioners, who recommend and are responsible for treatment, consider safety data regarding drug interchangeability to be insufficient for this kind of practice to be encouraged. Both the interchange and switching of drugs in the scope of therapeutic studies and pharmacovigilance. It is worth emphasizing that in such cases adverse events should be reported, and these reports should include not only the name of the active ingredient, but also the drug’s trade name. The EMA maintains that: “if an assessment process of biosimilars does not include recommendations on interchangeability or switching and leaves these regulations at the discretion of individual countries. The EMA stresses that the issue of switching drugs should be discussed individually between the patient and attending physician.11. Further scientific data are needed to prove that the efficacy and safety of therapy in patients treated permanently with a specific biological drug are the same as those in patients whose treatment was switched from a reference drug to a biosimilar \(^{10,11,12}\).
obtaining an informed consent of the patient, ex
whether such change in treatment should involve
information, which is also a legal requirement
cal practice, any change in treatment is associ
European experts in this regard 21
infliximab. There was a 97% consensus among
considered to be a distinct therapeutic option in
tant in the case of targeted therapy for oncolog
justified (statement 8). This is especially impor
drugs with a similar mechanism of action is un
fect, continuation of therapy based on switching
individual and detailed analysis of the risk-benefit
require further studies. The position state
On the other hand, this form of evidence may
lowest (III) level of scientific evidence according
This article is a translation from Polish into English
using innovative and biosimilar biological drugs
Kam J, Sajous, Gajowik-Via C et al. Efficacy of
biological disease-modifying antirheumatic drugs: a
 systematic literature review informing the 2013 update of the EUA
Smolen JS, Landewe R, Breedveld FC et al. EUA
recommendations for the management of rheumatoid
arthritis with synthetic and biological disease-
modifying antirheumatic drugs: 2013 update. Ann
Rheum Dis. 2014; 73(5): 502-509
Ventola C. Biosimilars Part 1: Proposed Regulatory
Weisz M, Belinsky MC, de Jonge T, van der Linden S, Gaujoux-Viala C., Nam JL. et al. Safety
literature review informing the 2013 update of

REFERENCES:
1. Abreu MM, Strand V, Levy RA, Arajoo DV. Putting the
to better into better decision making. The judgment value
Clin. Triak. Grao. An Extension Study to Demonstrate Long-Term Efficacy and Safety of CT-P13 When Co-administered With Methotrexate in Patient With Rheumatoid Arthritis Who Were Treated With Infliximab (Remicade or CT-PI); in Study CT-P13:1.1 NCT01571219
Clin.triak.gov. An Extension Study to Demonstrate the Equivalence of Long-term Efficacy and Safety of CT-P13 in Patients With Ankylosing Spondilitis Who Were Treated With Infliximab (Remicade or CT-P13) in Study CT-P13:1.1 NCT01571206
Fazio G, Gioioliom G, Lapadula G et al. on behalf of SIR, SDMAst, and IS-IBD. The use of biosimilars in immune-mediated disease: A joint Italian Society of Rheumatology (SIR), Italian Society of Diabetes (SDMAst), and Italian Group of Inflammatory Bowel Disease (IS-IBD) position paper. Autoimmun Rev. 2014; 13(7): 751-755
Kucharz EJ. Reumatolog na rozdrożu, czyli o biologicznym lekach w chorobach zefektami krwiastosomowych [Rheumatologist at the crossroads—about biomedical biological medicines]. Reumatologia 2014; 52(2): 86-88
Kurki P, Belinsky MC. Working Party on Similar Biological (Biosimilar) Medicinal Products (BMWP) of Committee for Medicinal Products for Human Use (CHMP). ECOO
Pharmacoeconomic evaluation of fixed-dose triple combination for antihypertensive therapy in Ukraine

O. Mishchenko, National University of Pharmacy, Kharkiv, Ukraine
L. Iakovleva, National University of Pharmacy, Kharkiv, Ukraine
V. Adonkina, National University of Pharmacy, Kharkiv, Ukraine

Abstract

In Ukraine, the efficacy of treatment of arterial hypertension is only 19% in urban areas and 8% in rural populations. The most important reasons of low efficiency of antihypertensive therapy (AHT) are a wrong choice of tactics of the patient management and low adherence of patients to treatment. The latter decreases with increasing amounts of prescribed drugs. One possible way to increase patients’ compliance to treatment and the effectiveness of therapy is to use fixed-dose combinations (FDCs) of antihypertensive drugs (AHDs). The share of FDCs consumption (in terms of DDDs/1000/day) in Ukraine in the total structure of AHDs consumption is 25%, which is significantly less than the proportion of patients (60%), requiring combined AHDs. This is an indirect evidence of low compliance of Ukrainian patients to HD treatment and the need of pharmacoeconomic study of benefits of antihypertensive therapy using FDCs. As a result of pharmacoeconomic cost-effectiveness analysis it has been found that antihypertensive therapy in patients with moderate and severe AH using triple FDC ValAmi+HCTZ compared with three dual FDC: Val+HCTZ, Val+Ami, Ami+HCTZ provides greater clinical efficacy (the number of patients with the achieved target level of blood pressure). This triple FDC ValAmi+HCTZ has pharmacoeconomic benefits (greater cost efficiency), compared with only one dual FDC Val+HCTZ. This gives the opportunity to save money, presents additional advantages in efficiency and justifies benefits from its use by hypertensive patients in need of appointing the third AHD CCB amloidipine in addition to the existing dual one using valsartan and hydrochlorothiazide.

Keywords: pharmacoeconomic analysis, Hypertension, consumption of antihypertensive drugs in Ukraine, fixed combinations of antihypertensive drugs

The Feature of Non-Drug Technologies in Terms of Clinical and Economic Analysis is Less Scrutiny of Both Efficiency and Security and the Costs are Much Less Studied.

Introduction

Arterial hypertension (AH) is the leading cause of death from cardiac diseases which defines a high social significance of the problem of treatment of this disease 1,2.

In spite of the wide range of antihypertensive drugs (AHDs) in the pharmaceutical market of Ukraine, only a small proportion of patients with hypertension are treated effectively. Effectiveness of the treatment is only 15% in urban areas and 8% in rural populations 3, in Russia the frequency of achieving the target level of blood pressure (BP) is 21.5% 4. The most important reasons of low efficiency of antihypertensive therapy (AHT) are a wrong choice of tactics of the patient management and low adherence of patients to treatment. To find adequate therapy in patients at high risk of cardiovascular complications is the most difficult matter. Results of multicenter clinical studies confirm that the achievement of target BP values of less than 130 and 80 mm Hg are observed in 10-12% of patients with diabetes mellitus and no more than 17% of patients with renal failure 5, 6. Such a low level of the target BP imposes special requirements on the selection of AHDs. Antihypertensive monotherapy is effective not more than in a half of patients with a moderate increase in BP. ALLHAT studies have proved that only 60% of patients with AH of 1-2 degree reach the target BP values with monotherapy 7. Frequency of use of a combination therapy in patients with hypertension of 2-3 degree is from 45% to 93% 5, 6. The most extensive trial HOT showed that to achieve DBP level less than 90 mm Hg the combination therapy was required in 63% of cases, and to achieve DBP less than 80 mm Hg – in 74% of cases 7.

More pronounced effect of the combined AHT is due to different mechanisms of action of drugs to be combined, which solves the problem of AH multiple factors. The simultaneous use of different classes of drugs can influence the several links of AH pathogenesis – the activation of the renin-angiotensin-aldosterone and sympathoadrenal systems, endothelial dysfunction and renal impairment, myocardial hypertrophy and hyper trophy of the vascular wall 8, 9, 10. The combination therapy allows ensuring the BP effective control on a background of good endurance without increasing doses of preparations. STRATHE study showed that the use of the combination therapy allows achieving the desired effect from the very beginning of the treatment of hypertensive patients.

One drawback of the AH combination therapy is regime complication and increased cost of treatment, since the patient should administer at least two medicines, the multiplicity prescriptions of which may be different. The use of fixed-dose combinations (FDCs) of AHD allows leveling the problem. Fixed-dose combinations reduce the number of tablets taken and enhance patients’ adherence to treatment, which is an important factor of its effectiveness. The advantages of FDCs include ease of prescription and dose titration; reduction in the incidence of adverse events; reduction of the cost of treatment 11, 12, 13.

All this leads to an increase in patient compliance to treatment and therefore to increase in the number of patients achieving the target BP level as well as to reduction of the incidence of side effects.

Most drugs among FDCs are dual combinations. The most modern approach to AHT improvement is the creation and application of triple FDCs of AHDs. Triple therapy is recommended for the treatment of AH in patients whose BP is not adequately controlled by dual FDC. In this context, current clinical guidelines recommend the combination of ACE inhibitors or BRA, CCB and diuretics 14, 15. Most recently, in the pharmaceutical market of Ukraine a modern triple FDC was registered: valsartan-amloidipine-hydrochlorothiazide (ValAmi+HCTZ). This triple FDC is essentially a combination of two of the most used effective dual combinations of AHDs of the last decade: ACE inhibitors or BRAs with diuretics and ACE inhibitors or BRAs with CCB. Components of these FDC are the drugs of the first line in the AH treatment 14, 15, 16.

Analysis of the evidence of clinical effectiveness of individual components of the triple FDC ValAmi+HCTZ confirms that these are drugs with a high level of evidence. It has been found out...
that thiazide and thiazide-type diuretics are preferred for the first line of AHT in patients without risk factors, superior to CCB and ACE inhibitors in the prevention of cardiovascular events (CVE) and thus less expensive. High clinical efficacy of amlopidine in preventing the risk of CVE in patients with AH was confirmed in a number of multicenter clinical trials: PREVENT 21, CAMELOT 12, ASCOT-BPLA/CAFE 17, ALLHAT 25, of valsartan – in clinical trials: VALUE 15, VALIANT 16, ValHeFT 33, JIKEI HEART 17, KYOTO HEART 19.

Thus, to date, there is strong evidence of clinical effectiveness of AHDs hydrochlorothiazide, amlopidine and valsartan in the reduction of the number of CVE. This was the prerequisite for the first FDC based on them.

Clinical efficacy of the triple FDC Val+Aml+HCTZ has been proven in the randomized double-blind trial 21. First of all, this FDC is effective and safe for the treatment of patients, uncontrolled BP, with two AHDs, as well as for patients who have already received three drugs to control BP. However, to date there is no information about the pharmacoeconomic benefits of this FDC taking into account peculiarities of the Ukrainian pharmaceutical market of AHDs.

The objective of this research is the pharmacoeconomic study of advantages of the new triple FDC valsartan-amlopidine-hydrochlorothiazide compared with three other AHT regimens using dual FDCs: valsartan-hydrochlorothiazide (Val+HCTZ), valsartan-amlodipine (Val+Aml) and amlopidine-hydrochlorothiazide (Aml+HCTZ) in terms of a Ukrainian payer.

To implement this objective it was necessary to conduct:
- estimation of AHD consumption with allocation of the share of FDCs consumption in the pharmaceutical market of Ukraine using ATC/DDD-methodology;
- analysis of clinical efficacy of the triple FDC valsartan-amlopidine-hydrochlorothiazide according to clinical trial 17;
- determine costs and pharmacoeconomic indicators of the analyzed AHT regimens using FDCs.

MATERIALS AND METHODS

Estimation of AHD consumption with allocation of the share of FDCs consumption in the pharmaceutical market of Ukraine during 2012 was carried out according to the data retrieval system MORION using ATC/DDD-methodology 17. For pharmacoeconomic evaluation of the triple FDC Val+Aml+HCTZ the cost-effectiveness analysis was used. Cost-effectiveness ratio (CER) for each treatment regimen was calculated according to the formula (3): CER = DC/Ef (3), where DC – direct costs (costs of treatment regimen); Ef – effectiveness of treatment regimen. The costs and consequences of treatment regimens were compared in terms of the additional costs, which a treatment regimen imposes over another treatment, compared with the additional effectiveness (in terms of outcome) it provides. An incremental cost effectiveness ratio (ICER) was computed according to the formula (2): ICER = (DEc)/(Ef c) – (DEr)/(Efr) (2), where is DC - direct costs of reference treatment regimen; Dc - direct costs of compared treatment regimen; Ef - effectiveness of reference treatment regimen; Efr - effectiveness of compared treatment regimen 21.

For calculating the costs, retail prices of trade original drugs, relevant to INN FDC according to data in March 2013, were used. To convert hryvnia to euro, 13.97:1 ratio as at March 18, 2014 was used.

RESULTS

The results of evaluation of AHDs consumption in the pharmaceutical market of Ukraine during 2012 are shown in Fig. 1.

Analysis of the clinical efficacy of the AHT regimens in the Ukrainian market of 2012 were used. The findings confirm that in the overall structure of consumption the share FDCs of AHDs is 25%. Given the high proportion (over 60%) of Ukrainian consumers (patients with AH) requiring combined AHT 21, such consumption of FDCs AHDs is not high enough to ensure effective AHT in Ukraine. This in turn indirectly indicates low compliance of patients with AH, and the need to confirm the pharmacoeconomic benefits of FDCs AHDs, in particular FDCs of a new generation the cost of packing of which is usually higher than that of monotherapies.

Evaluation of the clinical efficacy and safety of AHT using the triple FDC Val+Aml+HCTZ in patients with moderate or severe stage of hypertension (BP: systolic > 145 mm Hg, diastolic > 100 mm Hg) compared with three other AHT regimens using dual FDC valsartan-hydrochlorothiazide (Val+HCTZ), valsartan-amlopidine (Val+Aml) and amlopidine-hydrochlorothiazide (Aml+HCTZ) was carried out according to the trial: Triple antihypertensive therapy with amlopidine, valsartan and hydrochlorothiazide: a randomized clinical trial 21.

Analysis of the clinical efficacy of the AHT regimens under study. The clinical trial 21 was carried out during 8 weeks. All the patients were divided with the application of randomization into 4 groups, the patients of which received the AHT appropriate regimen (Table 1). The patient of the first group (1st regimen) received the dual FDC Val+HCTZ at a dose of 160 mg/12.5 mg during the first week, during the next week – the triple FDC Val+Aml+HCTZ at a dose of 160 mg/30mg/12.5 mg, and during the next six months – this FDC at a higher dose of 320 mg/10mg/25 mg. The patient of the second group (2nd regimen) received the dual FDC Val+HCTZ during the first two weeks at a dose of 160 mg/12.5 mg, during the next six month – at a dose of 320 mg/25 mg. The patients of the third group (3rd regimen) received the dual FDC Val+Aml during the first two weeks at a dose of 160 mg/5 mg, during six month – at a dose of 320 mg/10 mg. The patients of the patients of the fourth group (4th regimen) received the dual FDC Aml+HCTZ during the first two weeks at a dose of 5 mg/12.5 mg, during the next six weeks – at a dose of 10 mg/25 mg.

As indicators of the clinical efficacy of the AHT regimens under study, reduction of the daily SBP and DBP was used. At the end of the study in each group the number of patients who achieved the target BP was determined (< 140/90 mm Hg) (Table 1). It has been found that the triple FDC Val+Aml+HCTZ is the most effective compared to other treatment regimens – 70.8 % of patients who achieved the target BP. Using the triple FDC Val+Aml+HCTZ for the treatment of 1000 patients makes it possible to additionally achieve the target BP in 260 patients compared with using the dual FDC Val+HCTZ, and 255 patients compared with the usage of the dual FDC Val+Aml+167 patients as compared to using the dual FDC Val+HCTZ.
Analysis of safety of the therapy regimens. In the clinical trial the safety of the therapy regimens under study were determined by the presence of side reactions. In the course of the study, not a single case of death was found. Less than 1 % of patients experienced serious side reactions occurring with the same frequency in each study group. Most often, the patients reported side reactions such as dizziness: 1.0 %, 1.1 %, 0.4 % and 0.2 %; hypotension: 0.7 %, 1.1 %, 0 % and 0 %, peripheral edema: 0.2 %, 0 %, 0.4 % and 0.9 %, respectively to the therapy regimens that were used: Val+Aml+HCTZ, Val+HCTZ, Val+Aml and Aml+HCTZ. Therefore, the analyzed regimens were comparable in the number and severity of side reactions, which allows not taking into account the costs associated with their correction in subsequent calculations.

Thus, AHT in patients with the moderate and severe AH using the triple FDC Val+Aml+HCTZ compared to three dual FDC: Val+HCTZ, Val+Aml, Aml+HCTZ ensures the higher clinical efficacy and, meanwhile, is as safe as the treatment using the said dual regimens.

Cost analysis. When calculating the cost of the therapy regimens under study, the cost of treatment was only taken into account, based on the retail price of the packaging of the relevant drugs, the cost of a daily and a course dose.

Table 2. Cost characteristic of the studied antihypertensive therapy regimens

<table>
<thead>
<tr>
<th>NO</th>
<th>FDC</th>
<th>PACK SIZE</th>
<th>RETAIL PRICE OF THE PACKAGE, €</th>
<th>COST OF ONE TABLET, €</th>
<th>COST OF TREATMENT IN 3 WEEKS, €</th>
<th>COST OF TREATMENT IN 9 WEEKS, €</th>
<th>TOTAL COST, €</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Val+HCTZ</td>
<td>tab. 160 mg + 12.5 mg, No 30</td>
<td>12.52</td>
<td>0.89</td>
<td>6.23</td>
<td>0.89</td>
<td>72.24</td>
</tr>
<tr>
<td>2.</td>
<td>Val+Aml+HCTZ</td>
<td>tab. 177.5 mg</td>
<td>20.35</td>
<td>0.73</td>
<td>5.11</td>
<td>60.90</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Val+HCTZ</td>
<td>tab. 160 mg + 12.5 mg, No 30</td>
<td>12.52</td>
<td>0.89</td>
<td>12.46</td>
<td>74.76</td>
<td>87.22</td>
</tr>
<tr>
<td>4.</td>
<td>Val+Aml</td>
<td>tab. 5 mg + 160 mg, No 30</td>
<td>9.67</td>
<td>0.35</td>
<td>4.90</td>
<td>29.40</td>
<td>34.30</td>
</tr>
<tr>
<td>5.</td>
<td>Aml+HCTZ</td>
<td>tab. 5 mg + 12.5 mg, No 30</td>
<td>6.47</td>
<td>0.22</td>
<td>3.08</td>
<td>18.48</td>
<td>21.56</td>
</tr>
</tbody>
</table>

The obtained results of the calculation of the cost of treatment are shown in Table 2.

Table 1. Characteristic of the studied regimens of antihypertensive therapy and clinical efficacy

<table>
<thead>
<tr>
<th>TREATMENT REGIMENS</th>
<th>1ST WEEK</th>
<th>2ND WEEK</th>
<th>3RD - 9TH WEEK</th>
<th>EF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Valsartan + Hydrochlorothiazide, 160 mg / 12.5 mg</td>
<td>Valsartan + Hydrochlorothiazide, 160 mg / 5 mg / 12.5 mg</td>
<td>Valsartan + Hydrochlorothiazide, 320 mg / 10 mg / 25 mg</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>2. Valsartan + Hydrochlorothiazide, 160 mg / 12.5 mg</td>
<td>Valsartan + Hydrochlorothiazide, 160 mg / 5 mg / 12.5 mg</td>
<td></td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>3. Valsartan + Amlodipine, 160 mg / 5 mg</td>
<td>Valsartan + Amlodipine, 320 mg / 10 mg</td>
<td></td>
<td>54.1</td>
<td></td>
</tr>
<tr>
<td>4. Amlodipine + Hydrochlorothiazide, 5 mg / 12.5 mg</td>
<td>Amlodipine + Hydrochlorothiazide, 10 mg / 5 mg / 12.5 mg</td>
<td></td>
<td>44.8</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ef - % of patients with the achieved target BP according to data of clinical trial21.
I-HCTZ requires the least cost under Ukrainian reality, which provides the least clinical efficacy - 44.8% of patients with the achieved target BP. This makes it possible to use this AHT regimen as a reference during the pharmacoeconomic analysis.

Comparison of the cost-effectiveness ratio (CER) of the analyzed AHT regimens showed that the lowest cost of the efficacy unit is characteristic of the dual FDC Aml+HCTZ, but this scheme is the least efficient (Table 3).

The use of dual FDC Val+Aml has the advantages of cost-effectiveness compared with the dual FDC Val+HCTZ and the triple FDC Val+Aml+HCTZ, but inferior to these regimes in terms of clinical efficacy. The triple FDC Val+Aml+HCTZ is characterized by high clinical efficiency - the proportion of patients with the achieved target BP equals to 70.8%. When comparing the two AHT regimes: the dual FDC Val+HCTZ and the triple FDC Val+Aml+HCTZ, the latter is dominant, that is cheaper and more efficient and has greater cost-effectiveness (102.03 € per 1 patient with a target BP) compared with the regimen Val+HCTZ (180.58 € per 1 patient with a target BP).

The results of the pharmacoeconomic cost-effectiveness analysis by the results of the clinical study have shown that AHT based on the triple FDC Val+Aml+HCTZ in patients with moderate and severe AH provides greater clinical efficacy compared with the other three treatment regimens using the dual FDCs and has pharmacoeconomic advantages compared with only dual FDC Val+HCTZ.

DISCUSSION AND CONCLUSIONS

A key factor contributing to poor BP control is nonadherence to prescribed antihypertensive medications. Improving patient adherence to AHT is the key to improving BP goal attainment. For most patients, however, combinations of two or more AHDs are necessary for adequate BP control. Patient adherence to AHT decreases with increasing number of pills in multiple pill regimens, but fixed-dose triple-combination treatments for hypertension provide a tool for addressing patient nonadherence associated with pill burden. For patients whose AHT includes multiple medications, the use of a single-pill, FDC therapy can significantly improve compliance and thereby help patients achieve BP goals.

Numerous single-pill, 2-drug combinations are available in the pharmaceutical market of Ukraine, and single-pill triple-combination Val+Aml+HCTZ recently received Ukrainian national authority approval. The use of single-pill, fixed-dose triple-combination therapy are appropriate in patients with uncontrolled hypertension who are taking 2 separate drugs, a 2-drug combination, or 3 separate drugs. Prescription drug costs sometimes (but not always) are higher for single-pill combination therapies compared with the component drugs, yet reduced health care utilization in patients prescribed single-pill combinations.

The share of consumption (in terms of DDDs/1000/d) of FDC AHD in Ukraine during 2013 year in the total structure of AHDs consumption is 25%. This is more than in Russia (5%) and closer to the volume of consumption in the European countries Germany (15%) and France (19%). Obviously, Ukrainian doctors follow the principal of current clinical guidelines in the treatment of hypertension.

But the share of FDCs AHDs consumption in Ukraine is significantly lower than the proportion of patients (60%), requiring the combined AHT. This indicates low compliance of Ukrainian patients to AH treatment and the need for pharmacoeconomic study of benefits of antihypertensive therapy using FDCs of AHDs.

The FDC of Val+Aml+HCTZ is a valuable addition to the armamentarium of drugs in the treatment of hypertension, because of its high efficacy in reducing BP, its tolerability, and the high compliance of patients with treatment. The results of the pharmacoeconomic cost-effectiveness analysis showed that AHT in patients with moderate and severe AH using the triple FDC Val+Aml+HCTZ compared to three dual FDC: Val+HCTZ, Val+Aml and Aml+HCTZ provides greater clinical efficacy (the number of patients with the achieved target BP). The said triple FDC Val+Aml+HCTZ has pharmacoeconomic advantages only compared to one dual FDC Val+HCTZ which makes it possible to save money and additional benefits of efficiency as well as justifies the advantages of its use by hypertensive patients in need of appointing the third AHD CCB amlodipine in addition to the existing dual therapy with valsartan and diuretic hydrochlorothiazide.

Table 3. The results of the cost-effectiveness analysis of antihypertensive therapy using fixed-dose combinations

<table>
<thead>
<tr>
<th>No</th>
<th>Treatment Regimen</th>
<th>Total Cost, €</th>
<th>EF</th>
<th>CER, € / 1REF.</th>
<th>Cost Difference, €</th>
<th>EF add.</th>
<th>CER, € / 1REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Val+Aml+HCTZ</td>
<td>72.24</td>
<td>70.8</td>
<td>102.03</td>
<td>53.90</td>
<td>26</td>
<td>2.07</td>
</tr>
<tr>
<td>2.</td>
<td>Val+HCTZ</td>
<td>87.22</td>
<td>48.3</td>
<td>180.58</td>
<td>132.45</td>
<td>3.5</td>
<td>37.84</td>
</tr>
<tr>
<td>3.</td>
<td>Val+Aml</td>
<td>34.30</td>
<td>63.40</td>
<td>63.40</td>
<td>15.27</td>
<td>9.3</td>
<td>1.64</td>
</tr>
<tr>
<td>4.</td>
<td>Aml+HCTZ*</td>
<td>21.56</td>
<td>44.8</td>
<td>48.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
- 1) EF = % of patients with the achieved target BP;
- 2) EF add. = % of patients with the achieved target BP compared with the reference therapy (Aml+HCTZ);
- 3) * - reference treatment regimen.
References:

10. The ALLHAT investigators. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002; 288(23): 2981-2997
22. Anatomical therapeutic Chemical (ATC) classification index including defined daily doses (DDDs) for plain substances. WHO Collaborating Centre for Drug Statistics Methodology. 1999: 23–33
Mammography screening in the OECD and its impact on health and health system related indicators

S. Wilde, Hamburg University of Applied Sciences, Department Health Sciences
T. Wirth, Hamburg University of Applied Sciences, Department Health Sciences
V. F. Zöllner, Hamburg University of Applied Sciences, Department Health Sciences

ABSTRACT

Background: Mammography screening, with its primary aim of breast cancer mortality reduction, is well implemented in most OECD member states. Overdiagnosis and overtreatment are often controversially discussed as potential consequences of screening. The objective of this study was to examine whether high mammography screening rates are associated with (a) higher incidence of and (b) lower mortality rates of breast cancer, and (c) higher inpatient mastectomy rates in OECD countries.

Methods: For this investigation, an ecological study design was chosen. Data of mammography screening rates, standardized incidence and mortality rates of breast cancer and inpatient mastectomy rates were derived from the database OECD.Stat Extracts for 2008 (or nearest year). For the interpretation of associations, a correlation coefficient, extracted root of R² in a bivariate correlation model, was used to estimate the bivariate correlation between mammography screening, which was determined as the independent variable, and various dependent variables (incidence rates, mortality rates and mastectomy rates; included and eventually excluded from all analyses, as mammography screening rates – the main variable of interest in this study – were not available for all OECD countries.

INTRODUCTION

Female breast cancer is the most prevalent neoplasm worldwide. In 2008, 5.2 million women were suffering from the disease 1, which is also the leading cause of death from cancer among the female population in Europe 2. However, today it is believed that evidence-based screening tests, like mammography screening for breast cancer in women aged 50-69 years, followed by appropriate treatments, have the potential to prevent a large number of breast cancer deaths and, by that, reduce mortality rates of breast cancer 3. Therefore, mammography screening programs, with the primary aim of breast cancer mortality reduction, have been implemented in most of the OECD countries during the last decade 4-6, in particular since the European Council recommended the implementation in December 2003 in all Member States 7. After the adoption of screening, many studies have examined the effect of this diagnostic intervention on mortality rates and possible consequences, such as overdiagnosis and overtreatment, referring to the possibility that such breast cancers are diagnosed and treated which otherwise would have never posed a risk 8-10.

Nevertheless, to our best knowledge, the overall perspective of all OECD states concerning the association between mammography screening and health-related indicators has not been well studied in a comprehensive manner. Consequently, the aim of this investigation was to examine whether high mammography screening rates in females, aged 50-69 years, are associated with (a) higher incidence rates of breast cancer, (b) lower mortality rates from breast cancer, and (c) higher inpatient mastectomy rates, as a surrogate for subsequent health care activities, in OECD countries.

MATERIALS AND METHODS

Data sources and definitions

For this investigation, an ecological study design was chosen, as aggregate data concerning mammography screening rates, incidence and mortality rates of breast cancer and mastectomy rates were available from the database OECD Stat Extracts (http://stats.oecd.org/; February 21st, 2014). Mammography screening rate was defined as the percentage of females aged 50-69 years being screened. For some OECD countries, this data was based on encounter data of a screening program, and for others, it was based on surveys 11. Whenever information of both sources were available for a country, the encounter data was used, as it was assumed to be more accurate. Breast cancer was defined as malignant neoplasms of the female breast (ICD-10-CM code: C50). Age-standardized incidence rates (for the World Standard Population for 1960) 12 and age-standardized mortality rates (for the total OECD population for 2010) 12 of malignant neoplasms were included in the analysis per 100,000 females. Mastectomy rates were defined as in-patient mastectomy procedures per 100,000 female (ICD-9-CM code: 85.4) 13.

Data from the index year 2008 were included in the analyses. If no data for the index year were available, the method of last observation carried forward was applied (to a maximum of three years back, i.e. 2005).

In this study, all 34 OECD states were included initially. Poland, Spain and Sweden had to be eventually excluded from all analyses, as mammography screening rates – the main variable of interest in this study – were not available for these countries.

Statistical methods

Bar charts and medians with 25th and 75th percentiles as well as minimum and maximum percentages were presented to describe mammography screening rates among OECD states. Scatter plots with the corresponding R², as a measure of explained variance, were produced. This was used to estimate the bivariate correlation between mammography screening, which was determined as the independent variable, and various dependent variables (incidence rates, mortality rates and mastectomy rates; included separately). Exponential, linear and logarithmic regression models were tested and fitted, based on which of the three types showed the best explained variance of the two variables examined. For the interpretation of associations, a correlation coefficient, extracted root of R² in a bivariate analysis, between 0.1 - 0.3 was assumed to represent a small medium effect, and 0.5 a large effect 14. Analyses were carried out using the Microsoft Excel 2007 spreadsheet.
Mammography screening rates

Mammography screening rates in 2008 showed a considerably broad distribution among OECD states, from 8.2% in Mexico up to 84.9% in Finland (Figure 1, Supplementary Table 1). The median screening rate was 60.0% with a 25th Percentile of 48.4% and 75th Percentile of 73.7%.

Incidence rates

In countries where a high proportion of the female population aged 50-69 years was screened, age-standardized incidence rates of breast cancer were higher than in OECD states where mammography screenings were less often performed (Figure 2). Overall, an exponential increase of incidence rates was found with a high degree of explained variance of $R^2 = 0.522$. Compared to countries with similar screening rates, the Slovak Republic was an outlier with a rather high age-standardized incidence rate (53.4 per 100,000 females), while only few women had undergone mammography screening in 2008 (15.7%).

Mortality rates

The age-standardized mortality rates from malignant neoplasms of the female breast were higher in those OECD countries in which a larger share of the female population was being screened with mammography, shown by a logarithmic increase of mortality rates in relation to screening rates (Figure 3). The variance in the proportion of women screened could explain observed mortality rates from breast cancer to a medium degree ($R^2 = 0.227$). Korea was an exception in this analysis. It was shown to have the lowest breast cancer mortality of all OECD countries (7.3 per 100,000 females), whereas a relatively high amount of women underwent mammography screening (Screening rate of 51.4%). Across all other countries with high mammography screening rates (>40%), there was only a small variation in mortality rates found. They were all in the range of 20-40 deaths per 100,000 females.

RESULTS

Mammography screening rates

Mammography screening rates in 2008 showed a considerably broad distribution among OECD states, from 8.2% in Mexico up to 84.9% in Finland (Figure 1, Supplementary Table 1). The median screening rate was 60.0% with a 25th Percentile of 48.4% and 75th Percentile of 73.7%.

Incidence rates

In countries where a high proportion of the female population aged 50-69 years was screened, age-standardized incidence rates of breast cancer were higher than in OECD states where mammography screenings were less often performed (Figure 2). Overall, an exponential increase of incidence rates was found with a high degree of explained variance of $R^2 = 0.522$. Compared to countries with similar screening rates, the Slovak Republic was an outlier with a rather high age-standardized incidence rate (53.4 per 100,000 females), while only few women had undergone mammography screening in 2008 (15.7%).

Mortality rates

The age-standardized mortality rates from malignant neoplasms of the female breast were higher in those OECD countries in which a larger share of the female population was being screened with mammography, shown by a logarithmic increase of mortality rates in relation to screening rates (Figure 3). The variance in the proportion of women screened could explain observed mortality rates from breast cancer to a medium degree ($R^2 = 0.227$). Korea was an exception in this analysis. It was shown to have the lowest breast cancer mortality of all OECD countries (7.3 per 100,000 females), whereas a relatively high amount of women underwent mammography screening (Screening rate of 51.4%). Across all other countries with high mammography screening rates (>40%), there was only a small variation in mortality rates found. They were all in the range of 20-40 deaths per 100,000 females.
Mastectomy rates

Inpatient mastectomy rates were higher in OECD countries with higher percentages of women screened, with an exponential relationship between these two variables (Figure 4). The variance in mammography screening rates could explain, to a large degree, the observed mastectomy rates ($R^2=0.258$). However, of the 31 countries considered to have been excluded due to missing mastectomy rates in the period under study.

Especially in the Netherlands and Finland, but also in Belgium, the mastectomy rates were high compared to OECD states with similar screening rates. Chile and Slovak Republic were outliers with rather low percentages of women screened, and subsequently low inpatient mastectomy rates. Besides being outliers, both countries differ with regard to the following variables which have to be kept in mind when interpreting the results:

- **Figure 4.** Mastectomy rates of breast cancer in relation to mammography screening rates in females aged 50-69 years in OECD states in 2006 (or nearest year)

The concept of ecological fallacy has to be mentioned in this context, as an ecological study design was used. Results are based on aggregate data for 2008 (or nearest year); therefore, no assertions about causality or time trends regarding mammography screening and health or health system related indicators can be made, neither on national nor on individual level. Mammography screening rates were based on program or survey data, which are assumed to be more imprecise because of recall bias. Hence, data acquisition is an additional bias.

In our study, it was found that mortality rates are logarithmically increasing with respect to screening rates, which is in contrast to the hypothesis that, in OECD states with higher screening rates, mortality from breast cancer is lower.

Mammography screening in the OECD and its impact on health and health system related indicators

Mammography screening rates vary across OECD states, which corresponds to former study results of variations across European countries. The type of screening program, as in nationwide and/or additional opportunistic screening, or population-based vs. non-population-based, is strongly linked to variations in screening rates. Apart from that, while the percentage of females screened is a key indicator of screening coverage (and hence access), the quality of administration and interpretation of mammography screening (screening interval, detection rates depending on technological sensitivity, specificity and specialization of staff) differs significantly between countries. Mammography screening rates are strongly dependent on the phase of implementation of screening (pre-screening, introduction phase and fully-running program). Therefore, the comparison of screening programs as such across countries is challenging. Overall, the type, quality and phase of implementation have important implications on health and health system related indicators.

In conclusion, breast cancer incidence, an increasing threat, is often associated with the introduction phase of a novel mammography screening program. During the course of a screening program, detection rates are expected to decrease again after a certain run-in phase. Therefore, different phases of implementation in the OECD countries could explain the broad distribution of breast cancer incidence rates. Furthermore, the incidence is also strongly dependent on risk factors of the disease, such as genetic predisposition, increased exposure to hormones, overweight and alcohol consumption, which vary widely across the countries under study. The exponential increase of incidence rates in relation to mammography fits the popular notion of a potential overdiagnosis of breast cancer as a result of wide screening. It is argued that through screening, many slow-growing tumors with a long non-symptomatic phase are detected which would otherwise not have been found in the remaining life-span of the individuals concerned, and would never have been fatal. A systematic review of randomized controlled trials assumed a rate of overdiagnosis of about 30%. Recently, in a randomized screening trial in Canada, it was found out that 22% of screen-detected invasive breast cancers were over-diagnosed, corresponding to one over-diagnosed case in 424 women screened. However, data collection started in the 1980s, and mammography screening at that time might not correspond to modern standards. An Independent UK Panel on Breast Cancer Screening also warned that estimates of overdiagnosis are subject to several uncertainties, and only rely on small amounts of data. Therefore, when more data might be available, the uncertainty may occur, they found the most reliable estimates of overdiagnosis in women invited to screening.
to be 11% of cancers diagnosed during lifetime, and 19% of cancers diagnosed during screening programs. In addition, as the severity of tumors was not assessed in this study, it can only be suspected that overdiagnosis of small invasive breast cancers and in situ lesions contribute to higher incidence rates in OECD states, where more women are screened.

In our study, it was found that mortality rates are logarithmically increasing with respect to screening rates, which is in contrast to the hypothesis that, in OECD states with higher screening rates, mortality from breast cancer is lower. This could be explained by the “sticky diagnosis” hypothesis. Due to mammography, the number of women diagnosed with breast cancer increases; subsequently, mortality rates inflate, because the diagnosis might follow the individual and influence decisions regarding coding of the underlying cause of death. Additionally, screening might also increase mortality via more performed radiotherapies, which are said to be harmful for women with a low risk of local recurrence, which often applies to tumors found by mammography. Nevertheless, current research suggests a decrease of mortality rates by screening of 15%, 26% after 6-11 years of follow-up, or even up to 48% and even up to 48%. An explanation for these varying results might be, apart from methodological issues, that studies usually compared mortality rates before and after the implementation of a screening program. With aggregated data used in this study, it was only possible to compare the rates in countries during one specific year, which might explain the contrasting findings. Moreover, mortality reduction at population level is expected to occur, at the earliest, several years after implementation of mammography programs, and is also depending on the implementation phase. This might be also the reason for a particularly low mortality rate in Korea. An increase of the mortality rate is expected as a result of an increasing incidence rate in Korea within the last years, maybe due to the adaption of western lifestyles. In turn, an increase of the mortality rate at population level will be seen several years afterwards. Contrasting to these findings, it was concluded in the current literature, based on results of a recent randomized screening trial, that mammography did not achieve to reduce mortality from breast cancer for women aged 40-59, and by that, authors recommended to reassess the rationale for mammography screening.

Mastectomy rates seem to be exponentially higher in OECD countries with higher mammography screening rates, which corresponds to the hypothesis that activity will follow diagnosis, although data was incomplete for mastectomy rates of the respective countries. Very much like incidence rates, mastectomy rates depend on the stage of screening implementation; whereby mastectomy rates are expected to be higher during implementation and are likely to decline during fully-running screening programs. This might have influenced the differences in mastectomy rates. Besides, variation in mastectomy rates can be a result of diverse national interventional policies (e.g. treatment guidelines and recommendations of therapy) independently from screening policies. Related to this, changes in such guidelines, e.g. from mastectomy as the standard treatment towards breast-conserving therapy, are important to take note of (and correct for), as they may differ across OECD states. For example, a lower decrease of mastectomy rates during the mammography screening implementation in Germany might be due to a higher proportion of breast-conserving surgeries as a new health policy. In analogy to overdiagnosis, overtreatment – which means “aggressive” therapy of tumors which would have never posed a risk – is a further possible reason for higher mastectomy rates in states with higher screening rates. A Cochrane review of randomized trials pointed out that mastectomy rates increased by 20% in women who underwent mammography screening, compared to those who were not screened. For Denmark, which also featured high mastectomy rates in our analysis, 33% overdagnosis and overtreatment was reported, which is still lower than previously expected. However, in the case of Germany, reliable data on the effectiveness of mammography screening with regard to decrease of breast cancer mortality are not yet available, and are expected to be published in five to seven years. For the UK, the Independent Panel weighs in significant benefits such as an estimated 20% reduction in overall mortality in women invited to a 20-year screening program, against possible harms of diagnosis and treatment of cancer that would never have caused problems, concluding that the screening program should continue, with the proviso that the pros and cons need to be clearly communicated to women.

Conclusions

Due to ecological design used and international variations in definitions, documentation, and guidelines to name but a few, the interpretation of the findings, i.e. the associations shown, needs to be handled with extreme caution. However, our results are in line with much of the current body of the literature. As potential reasons for less favorable levels of specific health indicators in relation to mammography screening, the roles of overdiagnosis, overtreatment as well as the phase of screening implementation can be discussed controversially. Regarding mastectomy rates, one must conclude that variation among OECD states might be partly be independent of screening coverage and due to national health policies, which are themselves prone to differ across OECD states, and even within the same states over time. Contrary to an intuitive hypothesis, mortality rates seem to be higher in OECD states with higher screening coverage. This could be biased or confounded by several factors, one of which is that mortality is expected to decrease in the general population only several years after implementation of a screening program. Therefore, ongoing research is necessary to assess the harm-benefit balance based on data from modern and nationwide mammography screening programs.
OECD states

<table>
<thead>
<tr>
<th>OECD states</th>
<th>Mammography screening rate</th>
<th>Incidence rate</th>
<th>Mortality rate</th>
<th>Malignancy rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia*</td>
<td>84.8</td>
<td>18.6</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>Austria†</td>
<td>69.9</td>
<td>25.5</td>
<td>74.6</td>
<td></td>
</tr>
<tr>
<td>Belgium*</td>
<td>109.4</td>
<td>34.9</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>Canada*</td>
<td>83.2</td>
<td>27.3</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>Chile*</td>
<td>40.1</td>
<td>18.6</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>Czech Republic*</td>
<td>53.4</td>
<td>34.8</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>Denmark*</td>
<td>83.7</td>
<td>27.3</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>Estonia*</td>
<td>50.2</td>
<td>26.3</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td>Finland*</td>
<td>84.6</td>
<td>26.4</td>
<td>92.2</td>
<td></td>
</tr>
<tr>
<td>France*</td>
<td>99.7</td>
<td>29.7</td>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>Germany*</td>
<td>81.8</td>
<td>30.1</td>
<td>69.8</td>
<td></td>
</tr>
<tr>
<td>Hungary*</td>
<td>44.9</td>
<td>27.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland*</td>
<td>57.9</td>
<td>32.6</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>Ireland*</td>
<td>93.9</td>
<td>38.6</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td>Israel*</td>
<td>96.8</td>
<td>33.9</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>Italy*</td>
<td>86.3</td>
<td>28.8</td>
<td>60.3</td>
<td></td>
</tr>
<tr>
<td>Japan*</td>
<td>42.7</td>
<td>13.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg*</td>
<td>82.3</td>
<td>28.0</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>Mexico*</td>
<td>17.2</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands*</td>
<td>96.8</td>
<td>35.2</td>
<td>89.4</td>
<td></td>
</tr>
<tr>
<td>New Zealand*</td>
<td>89.4</td>
<td>29.5</td>
<td>54.9</td>
<td></td>
</tr>
<tr>
<td>Norway*</td>
<td>76.2</td>
<td>22.6</td>
<td>78.8</td>
<td></td>
</tr>
<tr>
<td>Portugal*</td>
<td>60.0</td>
<td>24.0</td>
<td>53.4</td>
<td></td>
</tr>
<tr>
<td>Slovak Republic*</td>
<td>53.4</td>
<td>26.8</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>Slovenia*</td>
<td>65.5</td>
<td>34.5</td>
<td>45.8</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>89.4</td>
<td>29.0</td>
<td>74.2</td>
<td></td>
</tr>
<tr>
<td>Sweden*</td>
<td>89.4</td>
<td>29.0</td>
<td>74.2</td>
<td></td>
</tr>
<tr>
<td>Turkey*</td>
<td>28.3</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom*</td>
<td>87.9</td>
<td>32.5</td>
<td>66.9</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>76.0</td>
<td>25.2</td>
<td>46.3</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Table 1.

Mammography screening rates in females and corresponding health and health system-related indicators in OECD states in 2008 (or nearest year)

Data were available for 2008 or nearest year (*2007; † 2006 and ‡ 2005). * corresponds to program data and † to survey data. Poland, Spain and Sweden had to be excluded as a mammography screening rates were not available.

References:

Verification of healthcare needs by the use of National Health Fund Data - mental and behavioural disorders

J. Michałak, Department of Quality of Services, Procedures and Medical Standards, Medical University of Lodz, Poland
A. Ślecznyński, Public Health Department, Health Sciences Faculty, Medical University in Lodz; Department of Drug Economic and Policy and National Health Fund, Warsaw, Poland.
A. Fałek, Public Health Department, Health Sciences Faculty, Medical University in Lodz;
M. Brzozowska, Public Health Department, Health Sciences Faculty, Medical University in Lodz; Department of Drug Economic and Policy, National Health Fund, Warsaw, Poland.
M. Marczak, Medical University in Lodz, Health Care Policy Department

Abstract

Background: The ways of gaining the information on healthcare should be verified as the discrepancies between different sources may lead to serious mistakes. Unfortunately, there are few reports on the methodology on healthcare needs assessment especially when mental and behavioural disorders are considered.

Methods: The whole-nation statistical data from the Central Statistical Office (CSO) were compared to the whole-nation information on the reimbursed psychotropic medicines from the National Health Found. The most important mental health problems, and the spatial (regional) distribution of mental disorders in Poland were analysed.

Results: In 2011 the total number of outpatients registered in psychiatric facilities was 1,404,148 according to CSO but 7,870,481 people. The “neurotic disorders” registered in psychiatric facilities was 1,404,148. The comparison of data from CSO and NHF revealed the important spatial discrepancies between different sources. The completeness of registers strongly depends on the type of institution (healthcare centres, hospitals, outpatient clinics etc.), and usually covers only the patients from such an institution. The epidemiological data come from different reports and studies, but their accuracy and timeliness may be vague.

Conclusion: The comparison of data from CSO and NHF revealed the important spatial differences in healthcare inequalities, scale of double-registration of patients and overconsumption of medicines together with underestimation of healthcare needs. Also other information e.g. on patients’ non-compliance in alcohol dependence syndrome can be obtained in this way.

Introduction

Healthcare needs assessment is the crucial point in preparation and evaluation of almost each kind of healthcare strategies, policies, and planning. However, the methodology of gaining the information on health and healthcare should be verified as the discrepancies between different sources may lead to serious misunderstandings resulting in serious mistakes. Unfortunately, there are few reports on the methodology on healthcare needs assessment especially when mental and behavioural disorders are considered. The most important data indispensable for correct analyses are usually taken from epidemiological investigations and statistical reports. However, the role of epidemiology is sometimes overestimated as there are important limitations of epidemiological based needs assessments. It is also generally accepted that the healthcare needs should be assessed by the staff and the patients as well. On the other hand, the problem arises that staff and patients moderately agree about met needs, but agree less often on unmet needs. That is especially true in a case of mental disease and psychiatric problem, so special tools had been developed for assessment of such needs, e.g. Camberwell Assessment of Needs instrument, Client Sodicrometric and Service Receipt Inventory (CSSRI-EU) or even EQ-5 D. Also the general practitioners are sometimes involved in assessment of healthcare needs of population. Unfortunately, there are no fully objective, diagnoses-based methods for precise assessing health care needs.

Moreover, the accuracy and timelines of information strongly depend on the different sources of information. The most complete data can be found in the medical records, irrespectively from their forms (paper or electronic ones), but retrieving the information from such dispersed and disseminated sources is very difficult or even impossible. The registers of patients suffering from e.g. psychiatric disorders are another type of sources. The completeness of registers strongly depends on the type of institution (healthcare centres, hospitals, outpatient clinics etc.), and usually covers only the patients from such an institution. The epidemiological data come from different reports and studies, but their accuracy and timeliness may be vague.

It can be assumed that only patients who actually are in need, will take the medicines, and if the medicines are not taken – patients will not recognized the therapy as a need. The patients’ “non-compliance” means that doctor had prescribed the medicines but the patient has not bought them in the pharmacy and consequently – has not taken those medicines. The scale of non-compliance in pharmacotherapy may range from 15% to even 70% of registered patients suffering from different diseases. So it seems reasonable to verify whether the medicines consumption may be used as a measure for quantification of healthcare needs, at least in selected kinds of diseases. Mental health is an appropriate example for such analysis. It can be assumed that the outcome are the suffering from mental and behavioural disorders (F00-F99 according to ICD-10) are referred to psychiatric facilities, but there are also the outpatients who use medicines prescribed by general practitioners and specialists other than psychiatrists. The number of all true suffering persons and other psychotropic medications seems to be a dark figure, and a big one.

The attempt was made to compare the data on mental health diseases from the National Statistical Office (CSO): Statistical Yearbooks, and Statistical Bulletins, with the National Health Found (NHF) information. If the numbers of patients in both data sets were similar, or even identical - such information would be the reliable measure for health needs assessment. If they were not - information on healthcare needs could be provided also from medicines consumption data.

The aim of the study was to compare the data on different sources to determine whether the actual health needs may be verified by the use of data from National Health Fund.

Material and Methods

The statistical data on the healthcare system and selected diseases are collected according to the State Statistical Program in Poland, by the use of approx. 40 different statistical forms is sued and updated every year by the Ministry of Health. The results are presented every year in CSO Statistical Yearbook and in Statistical Bulletins published by the Centre for Information in Healthcare. The medicines consumption is registered by the pharmacies and pharmaceutical wholesalers. Those are the sources for analyses performed by different institutions e.g. IMS. The majority of prescribed medicines is reimbursed by the NHF, which has the complete information of all reimbursed prescriptions in Poland (but not of non-reimbursed ones, neither OTC). Moreover, NHF may identify each patient, his/her diagnoses, and each prescription for re-
The lists of 10 most frequent mental disorders / diseases was constructed on the basis of CSO and NHF data. Additional information was retrieved about diseases and conditions which are usually recognized as the most important mental health problems in Poland. The spatial (geographic) distribution of patients registered by CSO and patient who use psychotropic medicines reimbursed by NHF was analysed using the following data:

Table 1. The number of patients with 10 most often diagnosed groups of diseases (according to the Central Statistical Office) and diseases (according to National Health Found)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>CSO data</th>
<th>NHF data</th>
<th>Difference CSO-NHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Neurotic disorders</td>
<td>347 263</td>
<td>129 247</td>
<td>218 016</td>
</tr>
<tr>
<td>2. Affective disorders</td>
<td>269 408</td>
<td>185 561</td>
<td>83 847</td>
</tr>
<tr>
<td>3. Symptomatic mental disorders</td>
<td>199 663</td>
<td>103 372</td>
<td>96 291</td>
</tr>
<tr>
<td>4. Mental disorders due to use of alcohol</td>
<td>170 011</td>
<td>101 390</td>
<td>68 621</td>
</tr>
<tr>
<td>5. Dependence syndrome</td>
<td>144 894</td>
<td>99 786</td>
<td>45 108</td>
</tr>
<tr>
<td>6. Schizophrenia</td>
<td>143 511</td>
<td>95 857</td>
<td>47 654</td>
</tr>
<tr>
<td>7. Specific developmental disorders</td>
<td>72 644</td>
<td>92 598</td>
<td>-19 954</td>
</tr>
<tr>
<td>8. Mental retardation</td>
<td>59 578</td>
<td>90 624</td>
<td>-31 046</td>
</tr>
<tr>
<td>9. Other psychotic disorders (non-schizophrenia)</td>
<td>44 180</td>
<td>85 438</td>
<td>-41 258</td>
</tr>
<tr>
<td>10. Adult personality and behaviour disorders</td>
<td>34 194</td>
<td>59 438</td>
<td>-25 244</td>
</tr>
<tr>
<td>TOTAL NUMBER</td>
<td>1 485 266</td>
<td>971 311</td>
<td>513 955</td>
</tr>
</tbody>
</table>

Central Statistical Office data

National Health Fund data

1. Absolute numbers of outpatients in each voevodship suffering from mental and behavioural disorders - according to CSO (registered in mental health outpatients facilities).
2. Absolute numbers of outpatients in each voevodship who used the reimbursed medicines for mental and behavioural disorders - according to NHF (reimbursed prescriptions).
3. Prevalence of mental and behavioural disorders in each voevodship according to CSO and to NHF.

RESULTS

According to the Central Statistical Office data the number of patients registered in outpatient psychiatric clinics in Poland in 2011 reached 1 404 148 persons. At the same time the National Health Fund reimbursed psychotropic drugs for 7 870 481 people. So the difference was 6 466 333 – the patients which required appropriate medicines and probably suffered from some kind of mental problems, but were not treated by psychiatrists. According to CSO the percentage of Polish population treated and registered in psychiatric outpatient clinic was 3.64%. However, NHF reimbursed therapy with psychotropic drugs for 20.42% of the whole population of Poland.

The structure of patients’ populations was analysed according to the 10 most often diagnoses, basing on data from CSO and NHF (Tab. 1).

Table 2. The difference between CSO and NHF data referring to selected mental disorders (absolute numbers of patients in Poland)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>CSO data</th>
<th>NHF data</th>
<th>Difference CSO-NHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference CSO-NHF</td>
<td>170 011</td>
<td>208 471</td>
<td>38 460</td>
</tr>
<tr>
<td>F10.2 Dependence syndrome</td>
<td>144 894</td>
<td>129 247</td>
<td>-15 647</td>
</tr>
<tr>
<td>F40-F48 Neurotic, stress-related and somatoform disorders</td>
<td>547 263</td>
<td>547 263</td>
<td>0</td>
</tr>
<tr>
<td>F 20 Schizophrenia</td>
<td>143 511</td>
<td>148 360</td>
<td>4 849</td>
</tr>
</tbody>
</table>

It should be mentioned here that the number of patients registered and treated because of 10 most frequent conditions (1 485 266) was higher than total number of patients registered by CSO (1 404 148). That indicates that the remarkable number of psychiatric patients (approx. 80 000) were double registered (in different facilities). The number of patients with 10 most popular psychiatric diagnoses equals 1 485 266 according to CSO but only 971 311 according to NHF, as CSO presented its data aggregated into 19 groups of diseases in contrast to NHF – presenting all diagnoses F00-F99. NHF information seems to be much more accurate than CSO data. It should be noted that depression (F32-F33) was not even mentioned in CSO reports. According to NHF different types of depression are medicated by the reimbursed medicines in 249 697 patients in Poland.

F 10.2 (dependence syndrome) is the only exception to the rule that NHF numbers are higher than CSO ones. The difference equals minus 15567 persons who presumably do NOT consume the prescribed medicines (Tab. 2).

The spatial distribution of patients in all Polish voevodships according to CSO (persons registered in out-patient clinics for patients with mental disorders, addicted to alcohol and drug in 2011) and to NHF (persons who used reimbursed medicines in 2011 - diseases codes F00-F99) is presented in Tab. 3.
It can be seen that the number of patients according to NHF and CSO in the voievodships are remarkably different. Also the indicators (prevalence per 100 000 inhabitants) are not in accordance one with another as the CSO and NHF data are compared in voievodships. According to CSO data the highest prevalence of mental and behaviour disorders was found in Łódź voievodship (4867 per 100 000 inhabitants) and the least – in Warmian-Masurian (3876 per 100 000). The latter was in the province of the lowest prevalence with the highest according to NHF (24992 per 100 000 inhabitants). The least was in the Kuyavian-Pomeranian (Kujawsko-pomorskie) voievodship (1918 per 100 000). The latter was in the province of the highest prevalence of mental and behaviour disorders in Poland in 2011.

The whole-nation surveys on mental health are rather difficult, time-consuming, and expensive methods for assessing health needs. So it is important to find out and use every method which may simplify such an evaluation with appropriate accuracy and timeliness. According to Polish law the National Health Fund has collected data on all reimbursed prescriptions since 2004. That is an unique possibility to evaluate the normative health needs basing on use of medicines of every individual patient irrespectively from the place where the prescription has been given. Statistical offices collect the information from institutions (e.g. healthcare facilities) by the use of statistical forms. It is also regulated by law which information may be collected, by whom and when. The individual data are confidential, but the aggregated information may be published.

"Health needs assessment is a systematic review of the health issues facing a population leading to agreed priorities and resource allocation that will improve health and reduce inequalities". Usually the epidemiological and statistical data are used for those purposes. Medicines consumption is rather rarely used as a tool for health needs assessment, in spite of that the prescribed medicines are usually bought and used by the patients which are really in need. The quality of data is essential for evaluation and verification of normative health needs (understood as the number of healthcare services required for a given population suffering from a given condition).

The timeliness of data cannot be overestimated when the healthcare needs are considered. The preparation of statistical yearbooks is usually time-consuming and the "Statistical Yearbook of the Republic of Poland 2011" contains the data from year 2010 as the newest ones. In the case of "Health and Healthcare in 2011" published in 2012 the data also come from the previous year. In that respect NHF data are available much sooner than CSO information. NHF data are collected online and the results are available every month. However, the analysis of NHF information require specialists who are aware of different factors influencing healthcare needs.

In contrast to somatic disorders (e.g. pneumonia, hypertension, diabetes) mental diseases and behavioural disorders are rather difficult to diagnose and hard to be monitored. On the other hand, the majority of psychotropic drugs are prescribed by GPs. The percentage of people with mental disorders has been estimated by the use of questionnaires, as high as 36% in a general population. Polish CSO stated that approx. 3.64% of Polish population are treated with psychotropic medications. The NHF data indicated that over 20% used psychotropic medicines. The difference was 16.78% and it can be the indicator of underestimation of healthcare needs and/or of overconsumption of medicines. According to Jackson et al. the use of psychotropic medicines was a need in approx. 30% of patients in primary healthcare. So it can be stated that the mental and behavioural disorders in Poland are rather underdiagnosed or underreport ed in statistical forms.

The most striking feature of presented results were the discrepancies between almost all data obtained from CSO and NHF. For example, the number of patients treated in facilities (according to CSO) may differ from the actual number of people with mental health problems, as one person may be treated in several institutions because of several mental problems at the same year. That is the probable the cause of difference between number of patients registered and treated because of 10 most frequent conditions (1 485 266 patients) and total number of patients registered by CSO (1 404 148 patients). Comparison of data from CSO and NHF revealed the significant differences between both sources. First of all, the number of patients with mental problems in Poland registered by CSO is 5,61 times lower than the number of patients whose prescriptions has been reimbursed. Such underestimation has ranged since 4 to over 13 times depending on the voievodship. It can be used as a measure of health inequalities.

Moreover, the important differences in diagnoses were found. According to CSO the neurotic disorders, affective disorders and symptomatic mental disorders were the most often mental disorders in Poland in 2011. Moreover, the important differences in diagnoses were found. According to CSO the neurotic disorders, affective disorders and symptomatic mental disorders were the most often mental disorders in Poland in 2011.
CSO data and NHF data present quite different pictures of health needs of patients with mental and behavioural disorders in Poland. It is important, because the statistical data are the bases for preparation of strategic and regional health policies. It seems that the mental health needs assumed in such programs are underestimated.

The correct use of psychotropic medicines by the general populations may be a valuable tool to predict the health outcomes e.g. in case of suicide rates. That is considerable data on mental and behavioural disorders revealed important spatial differences in health needs of patients with mental and behavioural disorders. Also other information e.g. on health inequalities, scale of double-regression and proximity to death to very high levels. The analysis of spatial distribution of NHF and CSO data on mental and behavioural disorders revealed important health inequalities in different voiceholds. Similar phenomena might be seen in other countries but these variations should be further investigated.

CONCLUSION

The comparison of data from CSO and NHF revealed the important spatial differences in healthcare inequalities, scale of double-registration of patients and overconsumption of medicines together with underestimation of healthcare needs. Also other information e.g. on patients’ non-compliance in alcohol dependence syndrome can be obtained in this way.

Acknowledgements

Funding for this project was provided from the Medical University of Lodz, Poland.

Conflicts of interests: None declared

Keypoints

Central Statistical Office data and National Health Fund data present quite different pictures of health needs of patients with mental and behavioural disorders in Poland as the statistical

data refer to the outpatients from psychiatric facilities but NHF to general population.

Comparison of both sources may be a method for assessing actual mental health needs, to study health inequalities, and non-compliance as well. Strategic and regional health programs should take into account both types of sources.

The correct use of data on psychotropic medicines consumption by the general population may be a valuable tool to evaluate and predict the health outcomes, QALY and patients’ non-compliance.

REFERENCES:

“Pay-back” mechanism in the Polish reimbursement system - analysis and appraisal

I. Skrzekowska-Baran, Janssen-Cilag Polska Sp. z o.o.
B. Podgórny, PwC

ABSTRACT

The text of this review has been based on a diploma thesis, prepared by Mr Borys Podgorny under the supervision of Dr Iwona Skrzekowska-Baran, as part of the XXII Edition of the Advanced Management Training in Pharmacoeconomics, HTA, Pharma Marketing and Law of the Warsaw University Of Technology Business School. The presented review has employed a detailed analysis of appropriate provisions of the Reimbursement Act, while benefiting from the practical experience of the authors, regarding the implementation of the Act and the practical application of its principles.

The results of the conducted analysis indicate a number of significant drawbacks in the current version of the pay-back mechanism, which either prevent any correct calculation of the amounts to be returned or which may become a breeding ground for disputes and conflicts with marketing authorisation holders, as regards the administrative and legal aspects of the process. In consequence, should the pay-back mechanism remain an integral part of the Polish reimbursement system, it will need urgent legislative amendments to ensure its effective management and, first of all, to streamline the calculation of reimbursable amounts, based on available and verifiable data. Above all, however, it seems still reasonable and appropriate to ask about the sensibleness of and reasons for further existence of such a solution in the Polish legal system, where other legal mechanisms successfully execute the systemic goals in terms of reducing the payer’s expenses.

BACKGROUND

In spite of more than two years since the implementation of the new reimbursement system in Poland, some of its elements and mechanisms still raise serious controversies and arouse conflicting feelings. A reflection of this situation may be found in the works on amendment of the reimbursement provisions, which have, for some time, been underway at the ministerial level.

A controversial area, often avoided in discussions on the reimbursement system, is the mechanism of the so-called pay-back, i.e., a statutory common obligation, assuming the payback of a reimbursed amount in total or in part if the actual reimbursement expenses exceed the fixed annual budget.

The high complexity of this regulation raises reasonable disputes, regarding a number of substantive issues, such as the range of products, taken into account in the calculation of the amounts to be returned or the conditions to be met to trigger the mechanism for appropriate actions.

In this context, as well as in the absence of any broader examination of the pay-back mechanism in available literature, it seems highly advisable to analyse the assumptions of this solution. This review is an attempt of a systematic and complex approach towards payback-related issues. A starting point of this analysis, as well as its scope, are determined by the existing legislative framework, since nowadays, any implementation of solutions, which would sharply diverge from the (relatively new) regulations, laid down in the actual Reimbursement Act, can hardly be expected.

Keywords:
pay-back, reimbursement act, risk sharing

DOI: 10.7365/JHPOR.2014.5.11
JHPOR, 2014, 1, 94-103
The principle of solution

The ‘pay-back’ term started to enter wider circulation in 2010, being first used by the persons involved in the reimbursement issues in Poland, simultaneously with the publication of the reimbursement act, drafted in its first version and has, since then, at once become one of the symbols associated with the new legislation. Unfortunately, more in the context of risks and uncertainties, carried by the new regulations for the pharmaceutical market.

This term has been introduced not so much in the Act itself but more in its explanatory memorandum. While giving reasons for the implementation of the mechanism, it has been indicated that „the problem of considerable and unforeseeable increase in the expenses for reimbursement, incurred in the course of the financial year, was long ago recognised in other countries of the European Union,” “Particular countries have, during the last ten years, been introducing various solutions to prevent and tackle the problem, which – in the majority of cases – are based on the payback of any excessively reimbursed amounts by marketing authorisation holders after the end of financial year. In this context, it has been considered necessary to implement a mechanism in Poland which would allow sharing the risk of the National Health Fund, associated with the inclusion of subsequent products in the reimbursement scheme, with the industry”, referring to the solutions used in France, Portugal, and has been considered necessary to implement a reimbursement scheme, with the industry 1, regarding the solutions used in France, Portugal, reffering to the solutions used in France, Portugal, the risk of the National Health Fund, associated with the new legislation.

The ‘pay-back’ term started to enter wider circulation in 2010, being first used by the persons involved in the reimbursement issues in Poland, simultaneously with the publication of the reimbursement act, drafted in its first version and has, since then, at once become one of the symbols associated with the new legislation. Unfortunately, more in the context of risks and uncertainties, carried by the new regulations for the pharmaceutical market.

The Reimbursement Act defines one, basic condition which, when fulfilled, triggers a whole series of obligatory steps, tests and calculations, used to calculate the amount to be returned for a given reimbursed products (commonly referred to as “pay-back”). This condition is the overrun of the total reimbursement budget „in the course of the National Health Fund’s financial plan implementation” in part assigned to funding of medicinal products, foodstuffs intended for particular nutritional uses and medical products dispensed at pharmacies against prescriptions.

The possibility to verify the fulfilment of the above-mentioned condition should obviously be determined by the existence of a clearly defined reference point, with which the expenses incurred during a given year, will be compared (the Plan vs. the Execution). The Plan should then be a fixed figure, rigidly defined (e.g., in results of the voted and approved financial plan of the National Health Fund) and evaluated in time, as needed.

Interpretation difficulties begin already with this condition. Here not only does the legislator use a rather unclear and imprecise term of budget overrun „in the course of implementation of the National Health Fund’s plan”, but, furthermore, it emerges that the term of total budget for reimbursement in its part of funding the products, dispensed at pharmacy against prescription, has not been clearly defined, either. It is so, as – even if the Reimbursement Act indicates provisions, determining the level of the total budget for reimbursement 2, the implementing rules do not rigidly determine a division of the planned expenses in line with particular budget components, what means that no accurate, partial plans are made for the reimbursement of particular sectors, such as the products available at pharmacy, the products available from drug programmes or from the catalogue of chemotherapy agents. In consequence, pursuant to periodical communications, published by the Economic-Financial Department of the National Health Fund, the height of the planned total budget for the reimbursement of prescribed products is characterised by a rather high volatility, what is well illustrated by the table below.

The presented illustration indicates that, with no clear reference point in the actual legislative system, it is difficult (or even impossible) to assess from the point of view of the the reimburse-
ment applicant, i.e., the potential back payer, if the preliminary condition for the calculation of the exceeded amount is met during a given year. The system is also susceptible to errors or frauds, since – with the lack of annual measurements and of the budget amount – determined in advance – a risk cannot be excluded that, in result of provisional “shifts” among particular budget components or the Provincial Departments of the National Health Fund, the plan for a given month in reimbursement budget (due to a temporary budget underestimation), while in the annual approach, a surplus of means may be accounted by the National Health Fund. In terms of the regulation in its actual version, even in such a situation, it should be mandatory to precisely calculate both the exceeded amount and the pay-back amount in particular limit groups. On the contrary, the actual system demonstrates high far-reaching volatility and unpredictability in effect of inaccuracy in the legislative solutions, what may in future be a source of disputes and conflicts, regarding correct calculations of pay-back amounts and their height.

The mechanism of calculation of exceeded amounts in particular limit groups

Assuming that – regardless of the above-mentioned controversies – the preliminary condition for pay-back determination is regarded as met and, consequently, a requirement does not emerge from the effective regulations, either, it is therefore safe to assure that the provisions of the Reimbursement Act, divided in 2014 into three separate groups. As of today, the regulations do not, unfortunately, provide any answer to the question how to determine the plan for particular limit groups in a situation as the one above (as well as in a reverse situation, i.e., when limit groups are combined), while simplifications of any kind whatsoever, such as building plans per groups on the basis of data from particular products, do not have necessary foundations in the valid legislature.

In each case, the solution, as approved in the Act and concerning the principles of planning reimbursement amounts for particular groups, assumes that some plan already existed for each group in the previous year and this plan will only have to be adjusted by the growth coefficient for the whole reimbursement budget. As it has been indicated, such plans are not built in real time by the National Health Fund, thus the legislator has had to introduce another simplification in order to determine the reference point for the calculation of planned amounts in the limit groups.

The amount of exceeding the reimbursement plan in a limit group is calculated as the difference between the spent reimbursement amount for a given limit group during a financial year and the planned reimbursement amount in this group. While the first element of the equation does not raise any major controversies, as the reimbursement data in particular limit groups are publicly available, the mechanism of determining the planned reimbursement amounts in particular limit groups requires a broader analysis, as the National Health Fund has not, so far, committed any reimbursement expenditure budgets with breakdown by particular limit groups. Such a requirement does not emerge from the effective legal regulations, either, it is therefore safe to assume that the provisions of the Reimbursement Act do not constitute any new obligation, carried out on an ongoing basis by the National Health Fund and will only be followed when it is necessary to calculate the pay-back amounts. Only then will the reimbursement plans be assigned to particular limit groups.

Following the Reimbursement Act, the planned reimbursement amount is calculated as the product of the planned reimbursement amount in a given group for the previous year and the total reimbursement budget growth coefficient. Thereby, an artificial and, as it were, automatic mechanism of planned reimbursement calculation in every limit group has been introduced, disregarding not only health and therapeutic trends (e.g., an increased consumption of certain categories of products, justified by epidemiological and/or demographic factors) but also changes in the shape of particular groups. Such changes in groups with foodstuffs for the special nutritional needs may be a good example of dynamic changes which are observed in the limit groups:

<table>
<thead>
<tr>
<th>NAME</th>
<th>LIMIT GROUP 01.05.2013</th>
<th>LIMIT GROUP 01.05.2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neocate Advance</td>
<td>217.7</td>
<td>217.9</td>
</tr>
<tr>
<td>Neocate LCP</td>
<td>217.7</td>
<td>217.7</td>
</tr>
<tr>
<td>Nutramigen AA</td>
<td>217.7</td>
<td>2176</td>
</tr>
</tbody>
</table>

Source: The Announcement of the Minister of Health of April 24, 2013 and of April 23, 2014 on the list of reimbursed medicinal products, foodstuffs for special nutritional uses and medical products.

Obviously, any planning of reimbursement amount for 217.7 group, based on the data from May 2013, does not make any sense, as the group was, by decision of the Minister of Health, divided in 2014 into three separate groups. As of today, the regulations do not, unfortunately, provide any answer to the question how to determine the plan for particular limit groups in a situation as the one above (as well as in a reverse situation, i.e., when limit groups are combined), while simplifications of any kind whatsoever, such as building plans per groups on the basis of data from particular products, do not have necessary foundations in the valid legislature.

In each case, the solution, as approved in the Act and concerning the principles of planning reimbursement amounts for particular groups, assumes that some plan already existed for each group in the previous year and this plan will only have to be adjusted by the growth coefficient for the whole reimbursement budget. As it has been indicated, such plans are not built in real time by the National Health Fund, thus the legislator has had to introduce another simplification in order to determine the reference point for the calculation of planned amounts in the limit groups, mentioned, not least for the fact that, in 2011, the term of “limit groups” did not exist in the then effective regulations, created by criteria which would have been close to the present ones. Even if one was to admit that the groups of products, being subject to common limits in the year 2011, could be approached as corresponding to the present limit groups, the shape of the group has undergone (and is still undergoing) such major changes that any attempt of extrapolation of the planned reimbursement amounts for the year 2014 on the basis of data for the year 2011 is doomed to failure, at least for the series of new products, which have been added to the lists since 2012 (including the products with other EAN codes and new product generations) or for the evolution and the shape of the limit groups alone.

Summing up, it seems that the actual principles of planning/calculating reimbursement amounts in the limit groups effectively preclude the calculation of exceeded amounts in particular groups, what may be a serious obstacle to apply the pay-back mechanism in practice. A revision and amendment of these regulations is urgently needed, such that would unequivocally deter-
mine the point of reference (the plan), to which the reimbursement spending during a given reference period, could effectively be compared. It also seems that the concept, which assumes the calculation of exceeded amounts on limit group levels, may be difficult in practice, mainly for the continuous evolution in the shape of the groups, being in a way part of the logic of the Act alone 1.

The mechanism of pay-back amount calculation for individual products

Passing on to the method, by which the reimbursement applicant’s share in the total exceeded amount is going to be determined in a single limit group, one should, first of all, indicate that only these applicants participate in the pay-back procedure, for which the dynamics of reimbursement level during a given financial year is either equal or greater from 1 vs. the previous year. Additionally, for the products which were not reimbursed in the previous year, the coefficient of reimbursement level dynamics in a given limit group equals 1. In this way, the products, newly introduced to the group, will always participate in the pay-back process, even if they are characterised by a low market share, while the products with significant, but falling reimbursement amounts, will not be covered by the pay-back system. The products, for which individual risk sharing instruments have been defined, are also excluded from the pay-back system.

Regarding these applicants, which participate in sharing of the exceeded amount in a limit group, the actual participation in the exceeded amount will depend on:

- the share of the reimbursed amount for a given product in the total reimbursement amount in a limit group during financial year (where the calculation of the total reimbursement amount takes into account also the reimbursement value of the products which are excluded from the pay-back, e.g., due to reimbursement drop),
- the proportion of the selling price of a given product to the lowest official selling price of a given product, being the basis for the limit in that limit group in a given financial year (consequently, the more expensive is a product vs. the lowest official price in financial year, the proportionally higher is the pay-back share).

Assuming that the exceeded amount and the share in it have been calculated for a given product, the calculation of correct pay-back amount follows by multiplication of the above-mentioned values by 0.5 coefficient and by “G”, an additional adjusting factor.

It is worth emphasising that, in the initial version of the Act, the whole amount of the exceeded reimbursement was to be paid-back by the applicants. Only at the level of works on the Act at the Senate, it was decided to divide the pay-back amount, introducing „the coefficient of risk sharing between the public payer for health care services and the applicant, the medicinal product of which has been awarded by positive reimbursement decision” 2. This coefficient has, on one hand, assumed the form of pay-back amount adjustment by 0.5 for the payer, while being, on the other hand, completed by an additional formula, marked in the calculation formula by letter „G”. Unfortunately, the explanatory memorandum to the Act does not specify in detail the reasons, justifying the acceptance of particular calculation solutions, including the „risk sharing solutions”. Neither are there any detailed calculations or prognoses of budget revenues pursuant to pay-back payments, what may be surprising in case when an instrument of purely financial character is implemented.

Discussion and Conclusions

One of the declared (however not always in public) goals of the Reimbursement Act was a limitation of the reimbursement spending and protection of the State budget against an uncontrolled increase of the reimbursement expenditure in the future. In order to achieve the purpose, a number of mechanisms have been incorporated into the Act to impose a number of constraining requirements on the public payer, such as the „reference pricing”, price negotiations or obligatory price reductions in case when reimbursement applies to the first equivalent of the original reimbursed product or when market exclusivity period expires.

After the two-year effective period of the Reimbursement Act, it should be stated that the above-mentioned, “economic” goal of the Act has been achieved very effectively. It appears from the data of the Ministry of Health that the reimbursement expenditure decreased in the year 2012 alone by PLN 1.96 billion vs. the year 2011 3.

In the opinion of the Act authors, the pay-back mechanism was to have been another spending reducing solution, playing, at least, the role of a safety-valve in case if reimbursement demonstrated, for any reason, jumping trends. Even if the concept is not entirely unjustified, it has to be admitted that, for today, this particular tool reveals a number of defects. These defects are of such importance that they may either preclude correct calculations of pay-back amounts at all or they may become a source of disputes and conflicts with marketing authorisation holders on administrative-legal grounds. The costs of such legal proceedings (especially when the loser in the game was either the Minister of Health or the National Health Fund) may really overshadow any possible revenues from the pay-back mechanisms 4.

If, however, the pay-back tool was to remain an integral part of the Polish reimbursement system, urgent legislative changes are needed, which would enable an effective management of the mechanism and, first of all, which would ensure correct and precise calculations of pay-back amounts, based on available and verifiable data. Some changes were partially proposed in the project for the Act amendment of December 18, 2013 5, however, at their actual stage, they require further processing and final finish. In this situation, the following improvement proposals should receive due consideration:

- a clear, transparent definition of the time point against which the preliminary condition for pay-back calculation could be verified;
- a clear definition of the validity scope for the pay-back mechanism – is the pay-back amount calculated for all limit groups (including the products in drug programmes and in the catalogue of chemotherapies) or for the prescribed products, reimbursed at pharmacies only;
- an implementation of transparent methodology to design a reimbursement plan for limit groups.

Following the Communication of the Economic -Financial Department of the National Health Fund, issued for the period of January-March 2014, the budget for the reimbursement of prescribed products, available at pharmacy, was implemented in 22.69%. In analogous time periods of the years 2012 and 2013, the coefficient was 19.40% and 21.79%, respectively 6. Thus, even if a clear growing trend in the reimbursement expenditure is observed, still imposing of the obligation to calculate (and pay) the pay-back for the year 2014 is still little probable for the considerable drop in reimbursement during the years 2012-2013 vs. the „reference” year of 2011. Thus, as much time has been left, it would be appropriate to reconsider and implement the required legislative changes to eliminate the actual defects in the structure of the pay-back mechanism. But, first of all, it therefore still seems reasonable to ask about the general sense and reason of existence of such a solution in the Polish legislative system, if the other legislative mechanisms successfully fulfil the systemic goals of reducing the public payer’s expenditure.
References:

1. Citations from the explanatory memorandum to the Act on the reimbursement of medicinal products, foodstuffs intended for special uses and medical products, forwarded for social consultations in a letter of September 9, 2010

2. See Art. 3 and Art. 74 of the Reimbursement Act

3. Art. 4 section 8 of the Act, providing that the exceeded amount and the pay-back amount are calculated by the Fund within 30 days from the approval of the financial statement for the previous year, may be regarded as a kind of an “interpretation gate”, supporting the verification of the preliminary condition for calculation of exceeded amounts on annual basis. This provision may, however, be interpreted as referring exclusively to the time-point of technical calculation and not to the time-point, constituting the occurrence of the pay-back mechanism

4. Constituting the ratio of the total budget for reimbursement during financial year, decreased by the reserve, mentioned in Art. 3 section 3 of the Act, and of the total budget for reimbursement in the previous year

5. The limit grounds were in that time published in the regulation of the Minister of Health, issued on the basis of Art. 38 section 6 of the Act on providing Healthcare services financed from public funds. The price limits were introduced for the drugs with the same international name or with different international names but revealing the same therapeutic effect

6. For example, the Minister of Health may in certain situations routinely issue decisions, changing limit group definition

7. Resolution of the Senate of May 2, 2011 r., Print No. 452

8. This coefficient is a ratio (i) of the amount, by which the total budget for the reimbursement of prescribed products is exceeded and (ii) of the sum of exceeded amount in particular limit groups. It may then be assumed that this coefficient is to compensate possible disparities between the total amount of exceeded reimbursement at the total budget level and the summed amount of exceeded reimbursement at the level of the limit groups

10. It is, among others, indicated in the records from the margin-price dispute, where the main axis of controversy was the legal appropriateness of imposing penalties for some pharmaceutical companies for their alleged exceeding of official prices and margins

Medical Information Center (CIM)

ABSTRACT

Many institutions deal, or should deal with the collection, processing and purposeful use of the available scientific information in the world, which targeted, will become an instrument in the hands of the government. These institutions are acting separately, often using information from unverifiable sources, creating imperfect opinions, potentially used by the bureaucratic structures, with similar, usually narrowly specialized databases of information or opinion-forming units become the most serious, independent of the influence of lobbying factors tool for the state in the making and amendment of systems and procedures valid in the Polish health care.

The proposal to create the Medical Information Centre can provide a solution that entering new quality, already existing European and national structures, with similar, usually narrowly specialized databases of information or opinion-forming units become the most serious, independent of the influence of lobbying factors tool for the state in the making and amendment of systems and procedures valid in the Polish health care.

Keywords:
W. Giermaziak, Główna Biblioteka Lekarska
DOI: 10.7365/JHPOR.2014.5.12
JHPOR, 2014, 1, 104-107

1. GBL - its scientific background in the form of on-line Thesaurus, Polish Medical Bibliography, international databases,
2. AOTM - in accordance with its statutory purpose, in my opinion should not be used only for the purposes of public payer, but for the assessment of all procedures required evaluation of the proper functioning of the health care system in Poland,
3. Medical Audit Agency - control the efficiency of the system,
4. HTA - the state agency, which guarantees the quality of medical records evaluation serving as the starting material for the registration work and authorization of drugs, medical supplies and medical devices for URPL.

The sources of current information on all aspects of the Polish market of drugs, from registration procedures, to control of the market and the internal control procedures, are:

1. Chief Sanitary Inspectorate (GIS) - should fulfill functions in accordance with statutory appointment. Thus, I want to clearly emphasize that this is not the authority of the State entitled to use the procedures for registration and admission to trading drugs without a prescription and dietary supplements. This feature fulfill URPL appointed by relevant law, therefore any existing GIS competence on drugs and dietary supplements should be immediately transferred to the URPL - proper authority of law, after a proper assessment of the merits and qualifications in the Medical Information Center. GIS should analyze the information on Poland) international or international databases, necessary and justified with special services.

Similarly, Institutes and Research Societies. The purpose of such solutions is the government access to the latest of Polish and world scientific achievements professionally prepared and thereby providing a source to develop the most optimal system solutions for the Polish health service.

2. Main Pharmaceutical Inspectorate (GIF) - similarly as GIS in addition to control of drugs and medical products manufacture should after the amendment or writing a new Pharmaceutical Law play the role of the pharmaceutical police, controlling obeying of the law in companies operating in the Polish pharmaceutical market in cooperation with the police, border guards, the Polish army, fiscal institutions and, if necessary and justified with special services.

The security interests of the state on the internal market with the principles of the protection of the Polish companies interests (including state protectionism in selected directions of development of the Polish market of drugs from production, import, export to pharmacy retail). The basis for the effective working of the GIF as in the case of GIS is transfer of decision-making in the hands of the government which is the guarantor of efficiency.

3. Chief Veterinary Inspectorate - I have not included the role of the Inspectorate in the sources for the CIM, but I think that in terms of drug production and marketing under the supervision of the Ministry of Agriculture with supervision limited to issue permits for veterinary wholesalers by GIF and supervision of production, requires law changes, specially that many “human” drugs are used on a daily basis in veterinary medicine. In my opinion, the market in this area is beyond the control of the State. The quality of animal and crop production as a raw food has the impact on level of public health and spendings on the remedy.

4. Medical Universities in Poland and cooperating with them (through them) research centers and institutions of other countries, as well as it does today in the GBL, (which is the general distributor of WHO scientific information on Poland) international organizations.

Similarly, Institutes and Research Societies. The purpose of such solutions is the government access to the latest of Polish and world scientific achievements professionally prepared and thereby providing a source to develop the most optimal system solutions for the Polish health service. World adopted system solutions, after checking their social function and actions quality of already implemented examples, are proven
method of adaptation of the best methods to deal with simultaneous elimination of lower quality solutions.

Obtained information from all signaled above sources, provide the basis for improving the functioning of the registration and admission system of trading dietary supplements and medical products on the Polish market in a way that ensures the safety of their use.

Improvement of quality and transparency in this economy area generates by itself significant savings in the system and the accuracy of management so saved up resources in the most optimal way in terms of function and application of Union and national law. For example the action of the Economic Commission at the Ministry of Health or the previous, however, strongly narrowed actions of AOTM in assessing drug technologies.

Another positive factor affecting the quality of the system and in favor of the CIM acceptance as a system solution is a substantive justification for the revision or creation of a new medical law, by identifying the most secure in the assessment of international researches, solutions that should be implemented into national law.

Additional positives resulting from the implementation of the systemically uniform, existing today as separate entities organization - the authorities of the state are:

1. the quality of medical information,
2. reliability of the information,
3. the acquisition speed of decision-making authorities,
4. independence from the lobbying influence for the opinion creation,
5. cooperation with other government units as component of the stabilizing role of the state in the organization and management of the health care system,
6. with rational and controlled risk management, CIM establishment does not carry additional state expenditures beyond the already existing for separate units included in the CIM,
7. cooperation with CIM analogues in the EU and in the world in the direction of optimizing the Polish health care system as part of integrated systems in Europe, and in some aspects (eg. vaccines and vaccination) in the world.

The above system changes previously existing, not always effective and efficient, circulation medical information system in Poland, perhaps in some circles it is going to be seen as too revolutionary, but I think that insertion of it, as the solution adopted in many EU countries (eg Italy, Spain, the Netherlands, Norway) can be an innovative step in the quality of substantive administrative decision in Polish drug market, and the strengthening of state control in the most socially vulnerable area such as the public health. I am aware of the need to discuss the details of this proposal, but it seems that such a discussion soon can lead to a radical improvement in the health sector by providing substantive answers to the most difficult questions and issues that should be resolved as soon as possible. I hereby declare my participation in substantive discussions on the proposed project and collaboration at every stage of its implementation.
Clinical experts from different disease areas presented and discussed their experience with biological products use and the impact on safety of the treatment. Prof. Thustochowicz focused his lecture on the autoimmunological diseases resulting from treatment with biological products. Prof. Filipowicz – Sosnowska, as a member of the Coordinating Team established by National Health Fund for rheumatologic diseases treatment with biological products, shared her experience in biological products use in the rheumatology area and presented the number of patients treated with biologicals. In relation to rheumatology Prof. Rutkowska – Sak presented the experience with biological treatment in pediatric population.

Prof. Plusa presented his opinion and experience with anti-IgE treatment in the allergic diseases and Prof. Owczarek approached the subject of biological therapies safety in skin diseases treatment.

Prof. Wysocki presented his positive experience with regards to solid tumors monoclonal antibodies treatment. Dr Łazicka-Gałecka presented the experience from ophthalmology and Prof. Rydzeńska assessed the safety and risks of biological and biosimilar treatment in case of gastrology.

The use of biosimilar products was discussed also by Prof. Jędrejczak, based on the case of hematology. Very interesting presentation including discussion on differences in observed adverse events reported due to original biological product and biosimilar product.

During the meeting there was also a special scientific debate with the participation of lecturers and guest speakers from Ministry of Health, the Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Main Medical Library and AHTAPOL dedicated to the discussion on the future of treatment with monoclonal antibodies and fusion proteins. The debate was an important step in the preparation of the final Polish Expert Group Position Statement on the safety of biological treatments with monoclonal antibodies and fusion proteins.

Regarding to the Polish Pharmacoeconomic Society sections activities they continue working on projects initiated last year.

The Health Related Quality of Life Section (HRQoL) finalizes activities related to Quality of Life dictionary. Currently, after receiving reviewers’ comments final modifications are made and the team is looking for potential options to publish the dictionary.

As continuation of previous year tradition an educational session dedicated to quality of life topic called “Wiosenne Spotkanie Edukacyjne Sekcji Jakości Życia Polskiego Towarzystwa Farmakoekonomicznego” (Spring educational meeting of the Quality of Life Section of Polish Pharmacoeconomic Society) was organized. It was held in Warsaw at the Medical University on 14th May 2014. During the meeting prof. Marcin Czech presented the use of conjoint analysis and other methods for measuring preferences in health care; mgr Karol Domarński talked about the willingness to pay for health improvement and the use of the method of conditional selection and the EQ-5D questionnaire. The clinical significance of quality of life end points in clinical trials was discussed by prof. Maciej Niewada; dr Dominik Golicki presented the theoretical basis and practical implications for using indirect costs and quality of life in pharmacoeconomical analyses. Dr Monika Szkultecka-Debek and mgr Marta Bem focused the audience attention on vignettes and their use in quality of life assessment.